
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Efficient Algorithms for Identification and Analysis of Repetitive Patterns in Biological
Sequences

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Jie Zheng

September 2006

Dissertation Committee:
Dr. Stefano Lonardi, Co-Chairperson
Dr. Tao Jiang, Co-Chairperson
Dr. Timothy J. Close

Copyright by
Jie Zheng

2006

The Dissertation of Jie Zheng is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

I am most grateful to my advisor Professor Stefano Lonardi and my co-advisor Professor Tao

Jiang, for their guidance in the early and crucial stage of my research career. It is Professor

Tao Jiang who introduced me to the exciting fields of computational molecular biology and

bioinformatics, and gave me the first research problem to work on. His warm-hearted en-

couragement has inspired in my heart a love for original research. A dedicated, caring, and

stimulating advisor, Professor Stefano Lonardi has provided me with helpful and insightful

advice, not limited to technical questions, throughout my Ph.D. studies. He is one of the

most patient listeners I have ever met.

I am also grateful to Professor Timothy J. Close (Department of Botany and Plant Sci-

ences) for his support and supervision in the NSF Barley Genome Project. I learned from

him how to work fruitfully with biologists.

I would like to thank three post-doctoral researchers at UCR. Dr. Jan T. Svensson pro-

vided valuable comments on my work in the OLIGOSPAWN project; Dr. Xin Chen introduced

me to the area of genome rearrangement and collaborated with me in the project of ortholog

assignment; Dr. Petr Kolman collaborated with me on theMCSP problem.

I wish to express my gratitude to Professor Neal E. Young for teaching me how to design

approximation algorithms as well as for helpful discussions on theMCSP problem, Pro-

fessor Lawrence Harper (Department of Mathematics) for teaching me combinatorics, and

Professor Xiao-Song Lin (Department of Mathematics) for discussions on applying topology

to computational biology.

iv

My thanks also go to my friends and UCR Alumni, Andres Figueroa, Li Jia, Jing Li, Yu

Luo, Jianjun Tian, Chuhu Yang for their friendship.

Finally, I would like to thank my parents and my wife Yuan for their support and love.

The text of this dissertation is in part rewritten from the following previously published

material.

• J. Zheng, S. Lonardi. Discovery of repetitive patterns in DNA with accurate bound-

aries. Proc. of IEEE International Symposium on BioInformatics and BioEngineering

(BIBE’05), pp. 105-112, Minneapolis, Minnesota, USA, 2005.

Stefano Lonardi supervised the research.

• J. Zheng, T. Close, T. Jiang, S. Lonardi. Efficient Selection of Unique and Popular Oli-

gos for Large EST Databases. Proc. of Symposium on Combinatorial Pattern Matching

(CPM’03), pp. 384-401, LNCS 2676, Morelia, Mexico, 2003.

J. Zheng, T. Close, T. Jiang, S. Lonardi. Efficient Selection of Unique and Popular

Oligos for Large EST Databases. Bioinformatics, vol. 20, no. 13, pp. 2101-2112,

2004.

J. Zheng, J. Svensson, K. Madishetty, T. Close, T. Jiang, S. Lonardi. OligoSpawn:

a software tool for the design of overgo probes from large unigene databases. BMC

Bioinformatics, 7:7, 2006.

Timothy J. Close, Tao Jiang, and Stefano Lonardi directed and supervised the research,

and Jan T. Svensson and Kavitha Madishetty contributed to the publication.

v

• A. Goldstein, P. Kolman, J. Zheng. Minimum common string partition problem: hard-

ness and approximation. Proc. of International Symposium on Algorithms and Com-

putation (ISAAC’04), pp. 484-495, LNCS 3341, Hong Kong, China, 2004.

A. Goldstein, P. Kolman, J. Zheng. Minimum common string partition problem: hard-

ness and approximation. Electronic Journal of Combinatorics, vol. 12(1), 2005.

Avraham Goldstein and Petr Kolman contributed to the publication through discus-

sions.

The above previously published material has been incorporated in this dissertation with

kind permission of Springer Science and Business Media, Oxford University Press, and IEEE

Computer Society.

vi

ABSTRACT OF THE DISSERTATION

Efficient Algorithms for Identification and Analysis of Repetitive Patterns in Biological
Sequences

by

Jie Zheng

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2006
Dr. Stefano Lonardi, Dr. Tao Jiang, Co-Chairpersons

Repetitive patterns, or ”repeats” for short, are sequences that occurs repeatedly in biological

sequences. Despite their conceptual simplicity, the problem of discovering and characterizing

biologically significant repeats is still open. There are three main stages of repeat analysis:

definition, identification, and interpretation. In this dissertation, we tackle the computational

challenges in each stage and demonstrate the utility of our approaches to several fields of

computational biology.

As it turns out, devising a definition of repeats that is mathematically sound and biolog-

ically plausible is rather challenging. We propose a new definition of repeats that considers

both length and frequency of occurrences. Our approach is a two-step process: we first model

the building blocks of repeats (calledelementaryrepeats), and then model the longer repeats

as concatenations of elementary repeats (calledcompositerepeats).

vii

In the identification stage, the challenge is to design high-throughput algorithms to pro-

cess large datasets. We describe algorithms for selecting two types of oligos from large

DNA sequence databases, namely (i)uniqueoligos, each of which appears (exactly) in one

sequence but does not appear (exactly or approximately) in any other sequence, and (ii)pop-

ular oligos, which appear (exactly or approximately) in many sequences. By taking into

account the distribution of the short substrings in the sequence database, the algorithms show

remarkable efficiency. We implemented our algorithms in a software called OLIGOSPAWN,

which has been used successfully to process a large unigene database for barley.

The goal of the interpretation stage is to infer evolutionary or functional relations among

the discovered repeats. In the wide range of problems in this domain, we address the problem

of genome rearrangement with multigene families, where duplicated genes are treated as

repetitive patterns. We aim to find a one-to-one mapping of genes between two genomes such

that their breakpoint distance is minimized, which is formulated as minimum common string

partition (MCSP) problem. We proveMCSP NP-hard and give approximation algorithms.

viii

Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Challenges . 3

1.2 A summary of our contribution . 4

1.3 Targeted audience . 6

2 Repeat Finding 8

2.1 Preliminaries . 8

2.1.1 Related work . 10

2.1.2 Our contribution . 11

2.2 Definition . 14

2.3 Algorithms for finding elementary repeats 17

2.3.1 Exact repeats . 17

ix

2.3.2 Approximate repeats . 21

2.4 Results . 26

2.4.1 Simulations . 26

2.4.2 Real biological repeats . 29

3 Oligo Design 31

3.1 Preliminaries . 32

3.1.1 Our Contribution . 34

3.1.2 Notations . 37

3.2 Unique oligo . 37

3.2.1 Definition . 38

3.2.2 Algorithm . 39

3.2.3 Group-unique oligo . 41

3.3 Popular oligo . 42

3.3.1 Definition . 43

3.3.2 Algorithm . 45

3.4 Oligo filtration and selection . 49

3.5 Results . 53

3.5.1 Implementation . 53

3.5.2 Simulations . 53

3.5.3 Running on real data . 56

x

3.5.4 Overgo hybridization . 58

4 Minimum Common String Partition 62

4.1 Preliminaries . 63

4.1.1 Related work . 64

4.1.2 Combinatorial properties ofMCSP 66

4.2 Hardness of approximation . 71

4.3 Algorithms . 77

4.3.1 Simple1.5-approximation for2-MCSP 77

4.3.2 Reducing2-MCSP to MIN 2-SAT 79

5 Conclusion 84

5.1 Future directions . 86

Bibliography 88

xi

List of Tables

2.1 Accuracy of exact elementary repeats detection in simulated data. 27

2.2 Accuracy of approximate elementary repeats detection in simulated data. . . . 28

2.3 Average accuracy of exact and approximate repeat identification for Alu re-

peats. 30

3.1 The average relative errors between the number of colors in the input and

the number of colors in output for a simulated experiment (n = 1.44 × 106,

t = 2000, lc = 20, cmax = 100, s = 100). 54

3.2 Specificity of group-unique oligo by OLIGOSPAWN validated by BLAST. . . 56

3.3 Distribution of frequencies of seeds in barley unigenes. The left column is

the range of the number of occurrences. The right column is the number of

seeds with a certain number of occurrences. 57

3.4 Distribution of the number of colors of the cores. The left column is the

range of the number of colors. The right column is the number of cores with

a certain number of color. 59

xii

List of Figures

2.1 An example of elementary repeats. 12

2.2 The sequence of the Alu repeat. 30

3.1 An overview of the algorithm for selecting popular oligos. For convenience

of illustration, the length of the oligos is assumed to bel = 36, and the length

of the cores is assumed to belc = 20. 47

3.2 Distribution of unique oligos. The horizontal axis stands for the percentage

of unique oligos over all36-mers in a unigene, and the vertical axis stands

for the number of unigenes whose unique oligos are at a certain percentage

of all its 36-mers. 58

3.3 Results of running the algorithm on the Barley dataset. Shown are the num-

ber of candidates generated by the algorithm (in millions), the number of

unigenes covered, the final number of popular oligos, the coverage ratio, and

the time taken by the algorithm (for different choices ofTc). 60

4.1 Conflict graph forMCSP instanceA = abcab andB = ababc. 68

xiii

4.2 An instanceIu in the proof of NP-hardness of2-MCSP. The lines represent

all matches, with the bold lines corresponding to the matches in the minimum

common partitionOu. 72

xiv

Chapter 1

Introduction

Mathematics is the art of giving the same name to different things. (As opposed

to the quotation: Poetry is the art of giving different names to the same thing.)

Jules Henri Poincaré (1854-1912)

Large-scale genome, transcriptome and proteome projects, especially the Human Genome

Project, have produced and continue to produce tremendous amounts of data. These data

can be roughly classified by their intrinsic dimensionality. One-dimensional data include

biological sequences, e.g. DNA, RNA, and protein sequences. Two-dimensional data include

gene expression data, RNA secondary structures, and mass spectrometry data, among others.

Three-dimensional data include the tertiary structures of proteins as a notable example. This

dissertation is concerned with the analysis of one-dimensional data.

Biological macromolecules (i.e. DNA, RNA, and proteins) consist of chains of small

organic molecules calledmonomers. Despite the overall complexity of macromolecules,

1

they are composed by only a few different types of monomers. In DNA, the monomers are

adenine, guanine, cytosine, and thymine. RNA uses the same set of monomers with the ex-

ception of thymine which is replaced by uracil. In proteins, there are 20 types of monomers

calledamino acids. From a combinatorial viewpoint, these are discrete “objects” and can

be represented as sequences (or “strings”) over finite alphabets consisting of symbols rep-

resenting the monomers. This natural representation as strings enables us to take advantage

of the large corpus of computer science research on text processing, in particular regarding

algorithms and data structures. Developing efficient computer algorithms for the analysis of

biological sequence data is arguably the main objective of a subfield of computer science

calledcomputational molecular biology.

In biological sequence analysis, the discovery and characterization of repetitive patterns

(or “repeats” for short) plays a central role. Roughly speaking, repeats are strings that appear

repeatedly. It is assumed that frequent or rare patterns may correspond to signals in biolog-

ical sequences that imply functional or evolutionary relationships. For example, repetitive

patterns in the promoter regions of functionally related genes may correspond to regulatory

elements (e.g. transcription factor binding sites). As another example, a multigene family

is a group of genes from the same organism that encode proteins with similar sequences. It

is believed that a multigene family is formed through DNA duplications and variations of a

single ancestral gene.

As it turns out, the concept of repeat is one of the most versatile in computational biology.

An example can be found in [48], where the authors applied repeat analysis to five distinct

2

areas of computational biology: checking fragment assemblies, searching for low copy re-

peats related to human malformations, finding unique sequences, comparing gene structures

and mapping of cDNA/EST. In this dissertation, we aim to build new models of repeats that

are more realistic and flexible than in [48], and to apply repeat analysis to several application

domains.

1.1 Challenges

Based on our experience, there are three main stages of repeat analysis: definition, identifi-

cation, and interpretation. Next, we describe the challenges in each stage.

Definition. The majority of existing methods (e.g. [48, 34]) define a repeat as apair of

similar strings of maximal length. They tend to ignore, however, the importance of repeat

frequency, i.e. the number of occurrences. It turns out that finding a definition of repeat

that takes into account both length and frequency is rather challenging. Also, the definition

is supposed to incorporate the notion of similarity between occurrences of the same repeat,

which adds to the difficulty.

Identification. The challenge in this stage is to design algorithms with high-throughput

efficiency. Typical input consists of large-scale datasets (e.g. whole-genome sequences).

Since the consensus sequence of repetitive patterns may not appear exactly in the input at all,

the search space is in general much bigger than the input itself. Moreover, space efficiency

3

is often crucial in sequence analysis, because the limitation of computer memory can make

it difficult to process large input no matter how fast the algorithms can be. Therefore, our

algorithms should achieve good trade-offs between time and space efficiency.

Interpretation. In this stage, the goal is to analyze the discovered repeats in order to infer

their functional and evolutionary relationships. To this end, we need to visualize the repeats

comprehensively and intuitively. The challenges are mainly due to the overwhelming number

of repeats to handle. Moreover, we need to rank different repeats by either statistical or

biological significance. However, there are different ways to assess statistical significance,

and statistical significance may not correspond to biological significance.

1.2 A summary of our contribution

In this dissertation, we tackle some of the challenges mentioned above and present algorithms

for finding and analyzing repeats.

In Chapter 2, we give a novel definition of repeats that takes into account both length

and frequency. The main idea is to employ a two-level approach: first, we identify short and

frequent repeats as basic building blocks, which are calledelementaryrepeats; second, we

identify long and less frequent repeats as concatenations of elementary repeats, which are

calledcompositerepeats. We also design efficient algorithms for finding elementary repeats

and report simulation results on synthetic data.

In Chapter 3, we present efficient algorithms for selecting short (e.g. 20-50 bases) strings

4

calledoligos from large EST (Expressed sequence tags) unigene databases. ESTs are par-

tial sequences of expressed genes generated by sequencing from one or both ends of cDNA

sequences, and unigenes are assemblies of overlapping EST sequences or non-overlapping

EST sequences (see Section 3.1 in Chapter 3 for more details). We design two complemen-

tary types of oligos: (i) unique oligos, each of which occurs exactly in one unigene, but

does not occur exactly or approximately in any other unigene. (ii) popular oligos, which

appear exactly or approximately in many unigenes. The main strategy is based on the anal-

ysis of the frequencies of short substrings in the unigene database. The resulting algorithms

show remarkable efficiency. We have implemented the algorithms into a software tool called

OLIGOSPAWN, which has been used successfully to process a large unigene database for

barley.

In Chapter 4, we address the problem of genome rearrangement with multigene fami-

lies, where duplicated genes are treated as repetitive patterns. In particular, we aim to find a

one-to-one mapping of genes between two genomes such that their breakpoint distance (see

e.g. [75]) is minimized, which is formulated as minimum common string partition (MCSP)

problem. The correspondence of genes implies evolutionary and functional relations of ho-

mologous genes between two species. We prove thatMCSP is NP-hard even when each gene

family contains no more than two genes, and we present several approximation algorithms

with ratio bounds.

The main contribution of Chapter 2 is the novel definition of repeat. Chapter 3 is focused

on the efficiency of algorithms. Chapter 4 aims to find evolutionary relationships among

5

discovered repeats. Thus, each of the three chapters focuses on one of the three stages of

repeat analysis. However, we do not claim to have solved all the problems in each stage.

Rather, we present promising techniques for solving specific problems arising from concrete

applications.

Each of the three chapters is organized as follows. At the beginning, we describe the

biological motivation and related work. Then, we introduce definitions and computational

problems, and study their properties (e.g. computational complexity). After that we present

algorithms for solving the problems and analyze their theoretical performance (e.g., asymp-

totic running time or approximation ratio bounds). Finally, we perform empirical analysis of

the algorithms by simulation on synthetic or real biological data.

1.3 Targeted audience

In addition to computational biologists, two other types of readers may find the material in

this dissertation useful. First, this dissertation could provide biologists with several prac-

tical tools for discovering and analyzing patterns from large sequence databases. Second,

computer scientists whose research interest is in information retrieval, data mining and data

compression, etc., may possibly extend some of the ideas presented here to their own fields

of study, due to the generality of the concept of repetitive patterns.

It is appropriate to mention topics that are related but not treated in this dissertation. First,

we do not attempt to analyze biological data directly. Instead, we provide useful computa-

6

tional tools that facilitate the biological discovery. Our experiments mainly test the accuracy

and efficiency of the algorithms. Second, this dissertation is application-oriented. Our objec-

tive is to design and implement practical algorithms, instead of exploring theoretical proper-

ties of the computational problems. Last but not least, our methods are combinatorial, and

do not employ statistical models (e.g. [74, 23, 27]) or machine learning techniques (e.g. [5]).

7

Chapter 2

Repeat Finding

In this chapter we give a novel definition of repeats that balances the importance of the

length and the frequency of repeats. We model the basic building blocks of repeats called

elementary repeats, which leads to a natural definition of repeat boundaries. We also design

efficient algorithms for finding elementary repeats, and test them on synthetic data. This

chapter is a revision of [79].

2.1 Preliminaries

Despite the incredible progresses that have occurred in Genomics in the last fifty years, sev-

eral fundamental questions remain unanswered. Some of the most intriguing questions are

about the role of non-coding DNA, and in particular the role of repetitive sequences. As

it turns out, a significant fraction of the genome of complex organisms is repetitive. For

example, only about 1% of the human genome codes for proteins, but more than 50% of

8

the human genome is composed of repetitive sequences [51]. Repeats are classified in five

classes, namely pseudo-genes (0.1% of the human genome), simple repeats (3%), segmental

duplications (5%), transposons (45%) and tandem repeats.

Although these long stretches of repeated DNA are commonly regarded as “junk”, there is

evidence that a variety of genetic diseases are associated with defects in the repeated structure

of some regions of the human genome. More than a dozen human genetic diseases, including

fragile X syndrome, myotonic dystrophy and Friedreich’s ataxia are related to irregularities

in the length of repeats. Insertional mutagenesis by SINEs (short interspersed elements)

and LINEs (long interspersed elements) in mammals have resulted in cases of hemophilia,

Duchenne muscular dystrophy, and sporadic breast and colon cancer.

A very important problem in computational biology is how to identify, classify, represent

and visualize repeats. The general problem of repeat discovery and classification can be

decomposed into two distinct subproblems. In the first, one identifies the boundaries of

each copy of the repeats. This problem, usually attacked by performing local alignments,

is difficult becauseof degraded or partially deleted copies, related by distinct repeats, and

segmental duplication covering more than one repeat(quote from [6]). The second problem

in the repeat classification is to infer the series of duplications that produced the final string.

In this paper, we will focus on the first problem.

9

2.1.1 Related work

Most of the computational tools for repeat identification available to biologists either require

an annotated library of repeats (e.g., REPEATMASKER [70]) or simply output all pairs of

repeated regions (e.g., REPUTER [49, 48], [68]). The problem with the first approach is that it

is too limiting, in particular when trying to analyze a new genome for which a complete repeat

library is unavailable. The latter approach is not completely satisfactory either, because it

fails to elucidate the complex structure of repeats.

From a theoretical point of view, a repeat is usually defined as a pair of identical (or

similar) substrings. For example, in Gusfield’s definition [34] the objective is to find maximal

repeated pairs. In REPUTER [49, 48] the output is again a list of pairs of similar strings of

maximal length. Most definitions have in common the idea of maximizing thelengthof the

repeats. They tend to ignore, however, the importance of repeat frequency, i.e., the number

of occurrences.

As said above, repetitive elements typically occur more than twice in real biological se-

quences. For example, transposons typically occur hundreds of thousands of times in com-

plex genomes. Therefore, we believe that a biologically meaningful definition of repeats

must take into account both the lengthand the frequency of repeats (and perhaps other fac-

tors as well). Unfortunately, as noted by some researchers (e.g., [8]), devising a definition

of repeats which is biologically plausible is not an easy task. When the frequency of repeats

are allowed to be more than twice, there exist tools (e.g., [66, 9]) for finding short or tandem

repeats. However, they are unable to find long and dispersed repeats.

10

Bao and Eddy [6] and Pevzneret. al.[59] recognized the shortcomings of definitions that

rely solely on length, and attempted to take into account other factors. A rigorous definition

of repeats considering both length and frequency, however, has not been given yet. The

difficulty lies in the assessment of repeat boundaries once the objective of maximality in

length is dropped. According to [6], approaches by multiple alignment are also problematic

because the mosaic structure of repeats will be missed and the problem of multiple alignment

itself is difficult. In [59], Pevzneret. al. proposed a graph calledA-Bruijn graphto explore

the mosaic structure of repeats. However, A-Bruijn graph is complicated and difficult to

analyze, especially when the input sequences are long and contain a large number of repeats.

In addition, the approach based on A-Bruijn graph still requires the pairwise local alignment

of the input sequences given as input, and thus the results heavily depend on the performance

of the pairwise alignment.

Recently, more attention has focused on the detection of repeat boundaries. Priceet.

al. [60] proposed the tool REPEATSCOUT to identify repeat boundaries via extension of con-

sensus seeds. R. Edgar and E. Myers [24] developed the tool PILER to find repeats with

reliable boundaries by considering well-known repetitive structures, e.g., terminal repeats

and tandem arrays.

2.1.2 Our contribution

As noted by Bao and Eddy,the problem of automated repeat sequence family classification is

inherently messy and ill-defined and does not appear to be amenable to a clean algorithmic

11

1 aat

S1︷ ︸︸ ︷
CGGAGGTCA

S2︷ ︸︸ ︷
TTAAACGGATAACG

S3︷ ︸︸ ︷
AATGAGTGcttaggttcgtattac

51 atggg

S1︷ ︸︸ ︷
CGGAGGTCA

S2︷ ︸︸ ︷
TTAAACGGATAACG

S3︷ ︸︸ ︷
AATGAGTGagtggaccgcatga

101 cca

S1︷ ︸︸ ︷
CGGAGGTCA

S3︷ ︸︸ ︷
AATGAGTG

S2︷ ︸︸ ︷
TTAAACGGATAACGggtcgggatcgagact

Figure 2.1: An example of elementary repeats.

attack(quote from [6]). We felt that in order to give a clean algorithmic attack, a natural and

clean definition of repeats was indispensable. To this end, we propose a bottom-up approach

that starts with the definition of basic building blocks of repeats that we callelementary re-

peats. Intuitively, an elementary repeat is a string whose substrings have similar (or identical)

distribution of occurrences. Before giving the formal definition, let us consider an example

in Figure 2.1 which illustrates the motivations as well as the basic idea.

In Figure 2.1, the DNA sequence contains three repeatsS1, S2, andS3, each occurring

three times. At the first glance, it would appear that the segmentA = S1S2S3 is the “correct”

repeat, as it is the longest. This is, in fact, what would be reported if the definition were solely

based on maximal length. However, we can see thatA is actually composed of independent

“elementary” repeats, namelyS1, S2, andS3, because their order is shuffled in the third

occurrence.

The example in Figure 2.1 is not a fictional scenario. Instead, it corresponds to a real bi-

ological case. In the four groups of LTR retrotransposons, Ty1/copia differs from Ty3/gypsy,

Bel elements, and retroviruses by the order of POL protein coding domains. The order in

Ty1/copia elements isprotease, integrase, RT/ribonuclease H; while the order in the other

12

three groups isprotease, RT/ribonuclease H, integrase. The shuffling of the POL domains

is one of the main features in the classification of LTR retrotransposons (see [29] for more

details).

The identification of the internal components of complex repeats, such as POL domains

of LTR retrotransposons, must be the first step in the accurate detection of repeats. The dis-

covery of the internal structure could be helpful also to infer the functions of repeats because

the order of these basic blocks is sometimes responsible for their functions. Moreover, con-

servation of the basic blocks among different types of repeats can reveal their evolutionary

relationship.

The aim of this chapter is to model the basic building blocks of repeats as combinatorial

objects. To this end, we have defined a specific set of properties that they must satisfy. First,

the blocks must occur a minimum number of times and can not be too short. Second, they

must beelementary, i.e., they can not contain other basic blocks inside. We call these basic

blockselementaryrepeats. In this paper, we consider two types of elementary repeats,exact

elementary repeats andapproximateelementary repeats. The former type requires all copies

of one repeat to be exactly identical, while the latter allows substitutions, insertions and

deletions.

13

2.2 Definition

We use standard concepts and notation about strings. The setΣ denotes a nonemptyalphabet

of symbols, and astring overΣ is an ordered sequence of symbols from the alphabet. We

assume that the input is a stringS of lengthn overΣ. We also use|S| to denote the length

of S. We writeS[i], 1 ≤ i ≤ n, to indicate thei-th symbol inS. We useS[i, j] as shorthand

for the substringS[i]S[i + 1] . . . S[j] where1 ≤ i ≤ j ≤ n, with the convention that

S[i, i] = S[i].

Let A be a substring that occurs (exactly) multiple times in the input stringS. Let

(A1, A2, . . . , Af) be the sorted list of the occurrences ofA. We call f the frequencyof

A, also denotedf(A). In the rest of the paper, letfm ≥ 2 denote the minimum frequency of

repeats, which is a parameter set according to applications. Although the symbolAi denotes

the sequence composition of one of the occurrences ofA, sometimes we will abuse this nota-

tion and used it to denote the position ofA in S. The meaning will be clear from the context.

We callAi acopyof A in S.

Let B be a substring ofA, and let(B1, B2, . . . , Bk) be the sorted list of the copies ofB

in S. Clearly, each copy ofB is a substring of a copy ofA, butB may also appear elsewhere

in S. We say thatB occurs withshift s in A if B starts at positions + 1 in A, that is

A [s + 1, s + |B|] = B.

Definition 2.2.1 LetA andB be substrings ofS as defined above. ThenB is a subrepeatof

A if f = k and everyBi occurs with the same shifts in Ai for all i = 1, 2, . . . ,m.

14

Intuitively, B is a subrepeat ofA when the distribution of the occurrences ofB in S

“agrees” with that ofA. Next, we need to consider the length of repeats. A substring ofS is

callednontrivial if its length is at least equal to a specified thresholdlmin. Hereafter, we will

always uselmin to denote such threshold. Typically,lmin ≈ log|Σ| n, but it can be set as other

values according to the application.

Definition 2.2.2 An exact elementary repeatof S is a nontrivial substringA of maximal

length such thatA occurs at leastfm times and every nontrivial substring ofA is a subrepeat

of A.

In other words,A is an exact elementary repeat when it does not contain any nontrivial

substring with a different distribution of occurrences and it is maximal in length. Going back

to the example in Figure 2.1, iflmin = 8, thenS1, S2, andS3 are exact elementary repeats

because they do not contain any substring of length at least 8 with a different distribution of

occurrences. However, the concatenationA = S1S2S3 of the three substrings is not an exact

elementary repeat, because nontrivial substringsS1, S2, andS3 are not subrepeats ofA.

Now let us generalize exact elementary repeats by considering the approximate case.

Given a real numberε ≥ 0, we say that sequenceA ε-matchessequenceA′ if D(A, A′)/|A| ≤

ε, whereD(A, A′) is theedit distancebetweenA andA′, i.e. the minimum number of edit

operations (substitutions, insertions and deletions) that transformA into A′. We callA′ as an

ε-copyof A. In addition, letB be a substring ofA. Then there must be a substring inA′,

denoted byB′, which corresponds toB. We callB′ the imageof B. The concept of “image”

mirrors the concept of “occurrence with shifts” in the exact case. Thus we will define it

15

formally in the following. Given an edit scriptE = (e1, e2, . . . , ed) that transformsA into A′,

we say thatE is orderedif, for any i, j such thatei, ej operate onA[i′], A[j′] respectively,

i < j impliesi′ < j′. That is,E operates onA from left to right.

Definition 2.2.3 Suppose the shortest ordered edit script that transformsA intoA′ is (e1, e2, . . . , et),

where (ei, ei+1, . . . , ej), for 1 ≤ i < j ≤ t, transforms a substringB of A into a substringB′

of A′. Then, we callB′ as theimage ofB induced byA.

StringB is called aninternal repeatof A if (i) B is a substring ofA, (ii) every image of

B induced byA is anε-copy ofB, and (iii) the total number of non-overlappingε-copies of

B in S is equal to the images ofB induced byA. Note that internal repeats should not be

reported because they are not independent repeats.

Definition 2.2.4 An approximate elementary repeatof S is a nontrivial stringA of maximal

length such thatA has at leastfm ε-copies inS and every nontrivial substring ofA is an

internal repeat ofA.

In contrast to exact case, an approximate elementary repeat need not appear exactly inS.

As a result, approximate repeats are much harder to identify than exact repeats. In the rest of

the section, we may sometimes omit the wordelementaryfor brevity.

Lemma 2.2.1 The number of copies ofall exact repeats inS is upper bounded byn.

In fact, for any two exact repeatsA andB, A is not a substring ofB; otherwise,A can

be extended toB and remains an exact repeat, contradicting the maximality of length in

16

Definition 2.2.2. This is important because the size of output is a serious practical issue in

repeat analysis.

2.3 Algorithms for finding elementary repeats

The goal in this section is to design algorithms for finding both exact and approximate repeats

in a long input sequence. A repeat can be represented by a list of pairs, each denoting the left

and the right boundaries of a repeat copy. Hence, the problem of identifying repeats can be

restated as the problem of finding their accurate boundaries. The task of our algorithms is to

scan the input stringS and decide whether a position ofS is a repeat boundary or not.

2.3.1 Exact repeats

An exhaustive algorithm for finding exact repeats is computationally impractical, because

there areΘ(n2) substrings inS, and each substring of lengthl containsΘ(l2) substrings to

check.

In sequence analysis theq-gramapproach is well-known for its effectiveness in filtering

out non-candidates (e.g., see [34] and reference therein). The idea is to collect the occur-

rences (or other statistics) for all the substrings of a given lengthq and use that information

to discard substrings that can not be solutions to the problem at hand. Recently, theq-gram

approach has been used in repeat analysis (e.g., [73, 24]).

Our definition of exact repeat allows theq-gram filtering approach for the identification

17

of potential elementary repeats. More specifically, we collect statistics ofq-mers inS. We

call theseq-mersseeds.

We find the boundaries of exact repeats by detecting the positions in which there is a

change in the distribution of the occurrences of the seeds. Given the definitions in Sec-

tion 2.2, a necessary condition for a substringA to be an exact repeat is that all its nontrivial

substrings are equally frequent. This condition allows us to reduce the search space of poten-

tial candidates considerably. Moreover, it suffices to consider only the frequencies of seeds,

due to the following lemma.

Lemma 2.3.1 A nontrivial substringA which occurs at leastfm times is an exact elementary

repeat if and only if it is a maximal substring such that all its substrings of lengthlmin are as

frequent asA itself.

Proof. If A is an exact repeat, then by definition all its nontrivial substrings, including those

of lengthlmin, are as frequent as itself. IfA is not an exact repeat, either it is not maximal in

length, or it has a nontrivial substringB that is more frequent thanA. But then anylmin-mer

in B, which is also inA, is more frequent thanA. 2

Our goal is to compare the frequency of the substringA with its seeds efficiently. Our

strategy is to store and retrieve the frequencies of substrings in the suffix-treeT for stringS.

In the following, the notations about suffix-tree are adopted from [34, pages 90–91].

Lemma 2.3.2 ([34]) In linear time, we can compute for each internal nodev the number of

leaves inv’s subtree.

18

Proof. We can do a depth-first search onT in linear time and compute the number of leaves

in v’s subtree by adding the numbers of leaves ofv’s children.2

Let fi denote the frequency of theith q-mer seed, and letf(A) denote the frequency of

any substringA in S. Every substringA of S can be associated with a nodev in T , such

thatf(A) equals the number of leaves inv’s subtree. To find such a nodev, we match the

symbols ofA along the unique path inT until A is exhausted. If the path ends at a node,

then that node isv; if the path ends in the middle of an edge, then the lower end of the edge

is the nodev associated withA. Hence, there is a many-to-one mapping from substrings of

S to the nodes ofT . Moreover, two substrings of equal length are mapped to the same node

if and only if they are identical.

Lemma 2.3.3 In linear time, we can map everyq-mer seed of stringS to a nodev in suffix-

treeT with minimum string-depth such that the seed is a prefix of the path-label ofv.

Proof. We build a vectorV of lengthn − q + 1 such thatV [i] contains the pointer to the

suffix-tree node associated with theith seed. We do a depth-first search onT and record the

string-depth (i.e. length of path from root) of the node being visited. If by moving from node

u to nodev the string-depth increases from smaller thanq to at leastq, then letPv be the

pointer to nodev. For every leafi in v’s subtree, which we visit one by one in the traversal,

we fill V [i] with Pv. Since depth-first search takesO(n) steps and each operation above takes

constant time, building the vectorV takes linear time.2

Corollary 2.3.1 After linear-time preprocessing, the frequencyfi of the ith seed is equal

19

to the number of leaves in the subtree under node pointed to byV [i], and it thus can be

computed in constant time.

The algorithmExact-Repeat for finding exact elementary repeats works as follows.

Phase 1. Construct suffix treeT for stringS, and we associate with each internal nodev

of T the number of leaves inv’s subtree. We also construct the vectorV [1 . . . n − q + 1] as

described in the proof of Lemma 2.3.3.

Phase 2. Scan stringS from left to right, and fori = 1, . . . , n − q + 1, decide ifi is the

left or right (or neither) boundary of an exact repeat. The left and right boundaries locate

alternatively alongS. Initially, we seti to min{k|fk ≥ fm} as the left boundary. Suppose we

have set positionbl as a left boundary, and we look for the right boundarybr. Let i increase

from bl, and letAi = S[bl, i + q− 1], i.e. Ai is the substring ofS from bl to the end of theith

seed. Iff(Ai) = fi, we move on toi + 1 since, by Lemma 2.3.1,Ai is a prefix of an exact

repeat; otherwise, we setbr to i− 1 as the right boundary paired withbl. Then, we move on

to find next left boundaryj = min{k|k > br, fk ≥ fm}, until stringS is exhausted.

To efficiently computef(Ai), we keep track of the last symbol of stringAi along the path

in suffix treeT as follows. Ifi is a new left boundary, we jump to node ofT pointed to by

V [i] and locate the end of the path whose label is identical with theith seed. When moving

from i to i+1, we match the last symbol ofAi+1 along the path inT , increasing string-depth

by one. By Lemma 2.3.2 and Lemma 2.3.3, in theith iteration, we can computefi andf(Ai)

in constant time.

20

In order to retrieve positions of repeat images in the next phase, whenever a right bound-

ary is selected, we mark the most recently visited node, whose path-label is the identified

repeat.

Phase 3. Finally, we do a depth-first traversal ofT so that for each marked node whose

path-label is a repeat, we collect the leaves in its subtree, which contains positions of the

repeat images. The repeat length is the string-depth of the node.

Time and Space Complexity. In phase 1, construction of suffix tree and vectorV takes

linear time, due to Lemma 2.3.3. Phase 2 takes linear time, since each positioni is examined

once and theith iteration takes constant time. In phase 3, depth-first traversal ofT takes

linear time. Therefore, algorithmExact-Repeat is in linear time. Similarly, it takes linear

space also.

2.3.2 Approximate repeats

Compared with exact case, approximate repeats are more realistic for applications in molec-

ular biology. However, the problem of finding approximate repeats precisely is very difficult,

therefore we give a heuristic which extends the ideas for finding exact repeats to follow the

definition for approximate repeats.

The basic idea for finding approximate repeats is the following. Suppose a repeatA ε-

matchesA1, A2, . . . , Am in S, and two seeds ofA, sayH andJ , occur inA with shiftssH ,

sJ respectively. Then the images ofH induced byA are likely to occur inA1, . . . , Am with

21

shifts close tosH . Similarly, images ofJ are likely to occur in the copies ofA with shifts

close tosJ . Thus, in each copy ofA the offset of the images ofH andJ is close tosH − sJ .

If we subtract the offset, then the occurrence lists ofH andJ shall be similar, where the

similarity is measured by number of images ofH that are close to images ofJ and vice

versa. In our algorithm, we use the similarity between the occurrence lists of twosuccessive

seeds to measure the likelihood that they belong to the same approximate repeat.

For example,S = cACGTGagACGAGgcaACGTG, where the capital letters represent

repeatACGTGwhich occurs three times. Suppose the length of seed is two. The occurrences

of seedAC are 2, 9, and 17, and the occurrences of seedCGare 3, 10, and 18. The two

seeds have similar occurrence lists except for a shift of one position, hence they are likely to

belong to the same repeat. Notice the substitution in the second occurrenceACGAG, which is

acceptable in our heuristic.

The algorithmApproximate-Repeat is sketched as follows.

Algorithm Approximate-Repeat(S, q, fm)

Input : stringS of lengthn, seed lengthq, minimum repeat frequencyfm

Output : left and right boundaries of approximate repeats inS

1. (B1, B2, . . . , Bk)← blocks of seeds of frequencies≥ fm

2. for each selected blockBi do

3. APX-SEED-MERGE(Bi)

4. save contigs from APX-SEED-MERGE into setC

5. CONTIG-MERGE(C)

22

Subroutine APX-SEED-MERGE(B: a block of seeds of frequencies≥ fm)

6. for i← 1 to |B| − 1 do

7. (P, Q)← sorted lists of occurrences of seed(i, i + 1)

8. if SIM -SCORE(P, Q, 1) ≥ SSmin(P, Q) or

9. SIM -SCORE(Q,P,−1) ≥ SSmin(Q,P) then

10. merge seedsi, i + 1

Subroutine SIM -SCORE(occurrence listsP andQ, offsetd)

11. Q← Q− d

12. b, p← 0 /* bonusb and penaltyp */

13. for i← 1 to |P | do

14. Qj ← pal of Pi in Q /* Qj is the closest toPi in Q*/

15. if |Pi −Qj| ≤ dm then b← b + 1

16. else p← p + 1

17. return b− ln(p)

Subroutine CONTIG-MERGE(list of contigsC)

18. for i← 1 to |C| − 1 do

19. A← last seed of contigCi

20. B ← first seed of contigCi+1

21. dAB ← position offset ofB againstA

22. if dAB ≤ Dmin then /* A, B are close enough */

23

23. (P, Q)← sorted occurrence lists of seeds(A, B)

24. if SIM -SCORE(P , Q, dAB) ≥ SSmin(P, Q) or

25. SIM -SCORE(Q, P ,−dAB) ≥ SSmin(Q,P) then

26. merge contigsCi, Ci+1

The algorithmApproximate-Repeat works as follows. In line 1, we locate the blocks

consisting of seeds that are at least as frequent as a specified thresholdfm. This step reduces

the search space by discarding non-repetitive regions. Thefor loop of lines 2-4 merges

successive seeds in each selected block into longer substrings if their occurrences are similar.

We call these longer substrings, which are constructed by merging one or more successive

seeds,contigs. Similarly, line 5 merges successive contigs if they belong to the same repeat.

In the subroutine APX-SEED-MERGE, we decide whether a pair of successive seeds

should be merged based on the similarity scores of their occurrence lists. Note that the

scores and the thresholds are related to the order of seeds. The subroutine SIM -SCORE cal-

culates the similarity score, by first removing the offset in line 11. Then in thefor loop of

lines 13-16, we count the number of positions inP that have a close position inQ. Thepal

of Pi is the positionQj in Q with the smallest absolute difference withPi. If the difference

is no more than a specified thresholddm, then we increase bonusb by one; otherwise, we

increase penaltyp by one. The similarity score is defined asb− ln p, a heuristic formula that

emphasizes the significance of matches. The heuristic thresholdSSmin(P, Q) is defined as a

fraction of|P |.

The subroutine CONTIG-MERGE is similar to APX-SEED-MERGE, except that now we

24

are trying to merge the last seed of the previous contig with the first seed of the next contig.

The purpose of CONTIG-MERGE is to reconnect segments that are broken by substitutions

and indels.

Time and Space Complexity. It takesO(n) time to find the blocks that consist of seeds

of frequencies at leastfm. For each distinct seed, SIM -SCORE is calledO(n) times, as

in APX-SEED-MERGE and CONTIG-MERGE. Each call of SIM -SCORE takes time lin-

ear in the size of input occurrence lists. Therefore, the total running time of algorithm

Approximate-Repeat is O(n2). On average, however, it is much faster, as most seeds are

likely to occur only a few times. The algorithm takes again linear space.

Post processing The output contains false positives due to the following reason. As-

sume the copies of a repeatA areA1, A2, . . . , Am. Let {x1, x2, . . . , xm} be the multiset

of symbols that follow the occurrences ofA. Whenm > |Σ|, at leastbm/|Σ|c symbols in

{x1, x2, . . . , xm} are identical. Let us assume that they are identical with symboly. Then,

the suffix of lengthlmin − 1 of A concatenated withy will result in a spurious repeat at the

right end ofA. Similarly, a spurious repeat may also occur at the left end ofA.

The purpose of post processing is to detect and remove these false positives. Observe that

a spurious repeat overlaps with a true repeat withlmin − 1 symbols, and it is less frequent

than the true repeat. We can detect the spurious repeats by comparing each repeat candidate

with its preceding and succeeding repeats. Clearly, the post processing takes time and space

linear inn.

25

2.4 Results

In this section, we demonstrate the accuracy of our algorithms by showing some experimental

results. We test our algorithms on synthetic datasets obtained by inserting simulated and

real biological repeats into random DNA sequences. We do not compare our results with

other tools for repeat identification, because the concept of elementary repeats is unique to

this approach while other tools (e.g. REPUTER) output pairs of maximal repeats which are

incomparable with our output.

2.4.1 Simulations

Our method of constructing the simulated DNA sequenceS is as follows. First, we gener-

ate a set of random DNA strings, which corresponds to a set of elementary repeats. Each

repeat has attached a specified multiplicity which is generated by Poisson distribution. We

randomly permute the multiset of repeat copies by the algorithm of Fisher and Yates [28].

Then, we alternate the repeat copies (selected according to their order in the permutation)

with purely random DNA sequences whose lengths are generated by Poisson distribution.

The frequencies of repeats and the lengths of the gaps among repeats are selected according

to Poisson distribution because it is the most appropriate probabilistic model in this case (see,

e.g. [74]).

When we are simulating approximate repeats, we also randomly mutate each copy before

it is used. The sequence of edit operations is generated randomly, and the number of muta-

26

input output
gap Se (%) Tp (%)
ave. worst ave. best worst ave. best
50 92.8 99.9 100 86.3 99.9 100
100 94.7 99.9 100 90 99.8 100
150 100 100 100 100 100 100
200 100 100 100 100 100 100
250 90.4 99.9 100 82.5 99.8 100

Table 2.1: Accuracy of exact elementary repeats detection in simulated data.

tions is bounded by a percentage, say 2%, of the length of the repeat copy. Finally, we append

at both ends of the assembled sequence two pieces of random DNA, and that completes the

construction ofS. We also record the left and the right boundaries of each repeat copy, which

will be compared with the output of our algorithms.

When we feedS as input to our algorithms, the output is a list of pairs of boundaries.

A boundary in the output matches a boundary in the input if they are within 5 bases of each

other. An output repeat copy matches an input one ifboth left and right boundaries match

that of the input copy. Thesensitivity, denoted bySe, is defined as the ratio of the number

of output copies matching the input over the total number of input repeat copies. Thetrue

positive rate, denoted byTp, is defined as the ratio of the number of output copies matching

the input over the total number of output copies.

In Tables 2.1 we show the accuracy of our algorithm on exact repeats of average length

50. Similarly, Table 2.2 reports the results for approximate repeats of average length 50. In

each table, we carried out 5 runs with gap lengths ranging from 50 to 250; for each run, we

executed our program 100 times. In every execution, the average number of distinct repeats is

27

input output
gap Se (%) Tp (%)
ave. worst ave. best worst ave. best
50 95.8 98.8 100 94.6 98.7 100
100 96.6 99.3 100 96.6 99.3 100
150 96.8 99.1 100 96.8 99.0 100
200 94.3 98.0 100 94.3 97.9 100
250 95.1 98.6 100 95.1 98.5 100

Table 2.2: Accuracy of approximate elementary repeats detection in simulated data.

10, the average frequency is 20, and the seed length is 15. Each row of the tables summarizes

the results of one run, namely the worst, the average, and the best accuracy of the 100 tests

of the run.

From the tables, we can make the following observations. First, the accuracy is remark-

ably high. The average value ofSe is higher than 98% and the average value ofTp is higher

than 95%, except for the approximate repeats of average length 200. Longer approximate

repeats are harder to detect, as the edit operations may occur in a narrow interval. In prac-

tice, however, elementary repeats are unlikely to be that long. The reason that the accuracy

of exact repeat detection is not 100% is that the random DNA strings we generated are not

“random” enough. As a result, there are additional repetitive patterns and fragmented re-

peats, which are not counted in validation but have been captured by our algorithm. Similar

situation occurs in approximate case.

Second, the performance of the algorithm for approximate repeats is more consistent than

that for exact repeats. This is due to the fact that the algorithm for approximate repeats is

more adaptive and thus able to handle more noisy input.

28

Third, in many cases, especially for approximate repeats, the value ofSe is close to

Tp. This happens because often the algorithm detects one correct boundary while the other

boundary falls outside 5 bases of the correct one, and it causes a false positive and a false

negative simultaneously. These false positives, however, have long overlaps with correct

repeats.

2.4.2 Real biological repeats

We also test our algorithms on synthetic data when the repeats are true biological repeats, i.e.,

we insert copies of real repeats into synthetic DNA sequences. We choose the well-known

Alu repeats, a family of short interspersed elements (SINEs) that comprises roughly 10% of

the human genome. When exact copies of Alu are inserted into random DNA sequences, the

average accuracy of our method is above 96%. In approximate case, the average accuracy is

above 80%.

Here we test our algorithms on simulated data when the repeats are not random, but

true biological repeats. We chose the well-knownAlu repeats, a family of short interspersed

elements (SINEs) that comprises roughly 10% of the human genome. The lengths of real Alu

occurrences in human genome range from less than 50 bases to over 400 bases. We fixed the

length of the Alu repeat to 281 bases, which is the most typical length.

The accuracy in Table 2.3 is calculated in the same way as that in Table 2.1 and Table 2.2.

As shown in Table 2.3, the average accuracy of finding Alu is comparable to that of finding

shorter random DNA, as in the Table 2.2. In addition, we found that, while most of the time

29

input output
gap Se (%) Tp (%)
ave. exact approx. exact approx.
50 96 84.2 96 82.7
100 99 84.8 99 83.2
150 99 80.6 99 79.0
200 98 79.8 98 78.0
250 97 83.7 97 82.2

Table 2.3: Average accuracy of exact and approximate repeat identification for Alu repeats.

GCCTGTAATCCCAGCactttgggaggccgaggtgggcggatcacttgaggtcgggagttc
aagaccagcctggccaacatggcgaaaccccgtctctactaaacataaaaaaattagtca
ggtgtggcggtgccgtGCCTGTAATCCCAGCtattcaggaggctgaggcaccagaattgc
ttgaacccaggaggtggaggttgcagtgaactgaagactgcgccacggcactccagcctg
ggcgacagagcaagactctgtctcaataaataaataattaa

Figure 2.2: The sequence of the Alu repeat.

the accuracy is extremely high (typically 100% for exact repeats), sometimes it is surpris-

ingly poor. The reason turned out to be that Alu is not an elementary repeat. Figure 2.2

shows the sequence of the Alu. Note that there are two exact internal repeats of length 15

(shown in upper cases), breaking the Alu repeat into two segments of roughly equal length.

It is reasonable to hypothesize that Alu came from two copies of some smaller repeat in the

evolutionary history. Using traditional approaches for repeat identification, it is difficult if not

impossible to find such kind of “embedded structure” in the repeats. We have also tried our

methods on several complete sequences of LTR retrotransposons from TREP database [53],

and found similar internal repeats. We suspect that some of them are actually LTRs and other

interesting domains.

30

Chapter 3

Oligo Design

In this chapter we address the problem of designing oligos from large EST unigene databases.

We aim to design efficient algorithms for finding two types of oligos, i.e. unique oligos

and popular oligos. Observe that finding unique oligos and finding repetitive patterns are

somewhat the opposite of each other.

In Section 3.1 we introduce biological motivation, related computational methods, and

our contribution. Section 3.2 defines unique oligos and gives an algorithms for finding them.

Similarly, Section 3.3 treats popular oligos. In Section 3.4 we describe how to select top

candidate oligos according to practical criteria (e.g. GC content, melting temperature, self-

annealing). Section 3.5 presents empirical results of using the algorithms on synthetic and

real data, and using the designed oligos in wet lab experiments. This chapter is compiled

from [77, 78, 80].

31

3.1 Preliminaries

Expressed sequence tags(ESTs) are partial sequences of expressed genes, usually 200–700

bases long, which are generated by sequencing from one or both ends of cDNA. The infor-

mation in an EST allows researchers to infer functions of the gene based on similarity to

genes of known functions, source of tissue and timing of expression, and genetic map po-

sition. EST sequences have become widely accepted as a cost-effective method to gather

information about the majority of expressed genes in a number of systems. They can be used

to accelerate various research activities, including map-based cloning of genes that control

traits, comparative genome analysis, protein identification, and numerous methods that rely

on gene-specific oligonucleotides (oroligos, for short) such as the DNA microarray technol-

ogy.

Due to their utility, speed with which they may be obtained, and the low cost associ-

ated with this technology, many individual scientists and large genome sequencing centers

have been generating hundreds of thousands of ESTs for public use. EST databases have

been growing exponentially fast since the first few hundreds sequences obtained in the early

nineties by Adamset al. [1], and now they represent the largest collection of genetic se-

quences. As of June 2006, 49 organisms have more than105 ESTs in NCBI’s dbEST [11],

including barley (Hordeum vulgare+ subsp. vulgare) with 437321 ESTs.

With the advent of whole genome sequencing, it may appear that ESTs have lost some of

its appeal. However, the genomes of many organisms that are important to society, including

32

the majority of crop plants, have not yet been fully sequenced, and the prospects for large-

scale funding to support the sequencing of any but a few in the immediate future is slim to

none. In addition, several of our most important crop plants have genomes that are of daunt-

ing sizes and present special computational challenges because they are composed mostly

of highly repetitive DNA. For example, theTriticeae(wheat, barley and rye) genomes, each

with a size of about5 × 109 base pairs per haploid genome (this is about twice the size of

maize, 12 times the size of rice, and 35 times the size of the Arabidopsis genomes), are too

large for us to seriously consider whole genome sequencing at the present time.

Among the set of EST databases, we are especially interested in the dataset of bar-

ley (Hordeum vulgare). Barley is premiere model for Triticeae plants due to its diploid

genome and a rich legacy of mutant collections, germplasm diversity, mapping popula-

tions (seehttp://www.css.orst.edu/barley/nabgmp/nabgmp.htm), and the

recent accumulation of other genomics resources such as BAC [76] and cDNA libraries [21,

54]. Nearly 300,000 publicly available ESTs derived from barley cDNA libraries are cur-

rently present in dbEST. These sequences have been quality-trimmed, cleaned of vector and

other contaminating sequences, pre-clustered using the software TGICL (http://www.

tigr.org/tdb/tgi/software/) and clustered into final assemblies of “contigs” (i.e.,

overlapping EST sequences) and “singletons” (i.e., non-overlapping EST sequences) using

CAP3 [41]. The collection of the singletons and consensus sequences of the contigs, called

unigenes, form our main dataset. In the rest of the chapter, we consider unigene databases as

the input data of our algorithms.

33

http://www.css.orst.edu/barley/nabgmp/nabgmp.htm
http://www.tigr.org/tdb/tgi/software/
http://www.tigr.org/tdb/tgi/software/

3.1.1 Our Contribution

We study two computational problems arising in the selection of short oligos (e.g., 20–50

bases) from a large unigene database. One is to identify oligos that areuniqueto each uni-

gene in the database. The other is to identify oligos that are popular among the unigenes.

More precisely, theunique oligoproblem asks for the set of all oligos each of which ap-

pears (exactly) in one unigene sequence but does not appear (exactly or approximately) in

any other unigene sequence, whereas thepopular oligoproblem asks for a list of oligos that

appear (exactly or approximately) in the largest number of unigenes. Note that a popular

oligo does not necessarily have to appear exactly in any unigene.

A unique oligo can be thought of as a “signature” that distinguishes a unigene from all the

others. Unique oligos are particularly valuable as locus-specific PCR primers for placement

of unigenes at single positions on a genetic linkage map, on microarrays for studies of the

expression of specific genes, and to probe genomic libraries in search of specific genes ([37]).

Popular oligos can be used to screen efficiently large genomic library. They allow one to

simultaneously identify a large number of genomic clones that carry expressed genes using

a relatively small number of (popular) probes and thus save considerable amounts of money.

In particular for the database under analysis, it has been shown previously by a number

of independent methods that the expressed genes in Triticeae are concentrated in a small

fraction of the total genome. In barley, this portion of the genome, often referred to as the

gene-space, has been estimated to be only 12% of the total genome [7]. If this is indeed true,

then at most 12% of the clones in a typical BAC library would carry expressed genes, and

34

therefore also the vast majority of barley genes could be sequenced by focusing only on this

12% of the genome. An efficient method to reveal the small portion of BAC clones derived

from the gene-space has the potential for tremendous cost savings in the context of obtaining

the sequences of the vast majority of barley genes. The most commonly used barley BAC

library has a 6.3 fold genome coverage, 17-filter set with a total of 313,344 clones [76]. This

number of filters is inconvenient and costly to handle, and the total number of BAC clones is

intractable for whole genome physical mapping or sequencing. However, a reduction of this

library to a gene-space of only 12% of the total would make it fit onto two filters that would

comprise only about 600 Mb. This is about the same size as the rice genome, which has been

recently sequenced. A solution for the popular oligo problem should make it possible to

develop an effective greedy approach to BAC library screening, enabling a very inexpensive

method of identifying a large portion of the BAC clones from the gene-space. This would also

likely accelerate progress in many crop plant and other systems that are not being considered

for whole genome sequencing.

In this chapter, we present an efficient algorithm to identify all unique oligos in the uni-

genes and an efficient heuristic algorithm to enumerate the most popular oligos. Although

the unique and popular oligos problems are complementary in some sense, the two algo-

rithms are very different because unique oligos are required to appear in the unigenes while

the popular oligos are not. In particular, the heuristic algorithm for popular oligos is much

more involved than that for unique oligos, although their (average) running times are similar.

The algorithms combine well-established algorithmic and data structuring techniques such

35

as hashing, approximate string matching, and clustering, and take advantage of the facts that

(i) the number of mismatches allowed in these problems is usually small and (ii) we usually

require a pair of approximately matched strings to share a long common substring (called a

common factorin [61]). These algorithms have been carefully engineered to achieve satis-

factory speeds on PCs, by taking into account the distribution of the frequencies of the words

in the input unigene dataset. For example, running each of the algorithms for the barley uni-

gene dataset from HARVEST takes only a couple of hours (on a 1.2 GHz AMD machine).

This is a great improvement over other brute-force methods, like the ones based on BLAST.

For example, one can identify unique oligos by repeatedly running BLAST for each uni-

gene sequence against the entire dataset. This was the strategy previously employed by the

HARVEST researchers. Simulations results show that the number of missed positives by the

heuristic algorithm for popular oligos is very limited and can be controlled very effectively

by adjusting the parameters.

In the context of DNA hybridization, most previous approaches define the specificity

of an q-mer in terms of the number of mismatches to the target sequences, although some

also take into account its physical and structural characteristics such as melting temperature,

free-energy, GC-content, and secondary structure [52, 64]. In [61], Rahman took a more

optimistic approach and used the length of the longest common substring (called the longest

common factor or LCF) as a measure of specificity. Given the nature of our target applica-

tions, we will take a conservative approach in the definitions of unique and popular oligos.

36

3.1.2 Notations

We denote the input dataset asX = {x1, x2, . . . xk}, where the generic stringxi is an unigene

sequence over the alphabetΣ = {A, C,G, T} andk is the cardinality of the set. Letni denote

the length of thei-th sequence,1 ≤ i ≤ k. We setn =
∑k

i=1 ni, which represents the total

size of the input. A string (or oligo) fromΣ is called anq-mer if its length isq.

Given a stringA, we writeA[i], 1 ≤ i ≤ |A|, to indicate thei-th symbol inA. We use

A[i, j] as a shorthand for the substringA[i]A[i + 1] . . . A[j] where1 ≤ i ≤ j ≤ n, with the

convention thatA[i, i] = A[i]. Substrings in the formA[1, j] correspond to theprefixesof

A, and substrings in the formA[i, n] to thesuffixesof A. A stringB occursat positioni of

another stringA if B[1] = A[i], . . . , B[l] = A[i + l − 1], wherel = |B|.

Given two stringsA andB of the same length, we denote byH(A, B) the Hamming

distance betweenA andB, that is, the number of mismatches betweenA andB.

3.2 Unique oligo

The unique oligo problem has been studied in the context ofprobe design[52, 61, 64]. The

algorithms in [52, 64] consider physical and structural properties of oligos and are very time

consuming. (The algorithm in [64] also uses BLAST.) The algorithm presented in [61] is,

on the other hand, purely combinatorial. It uses suffix arrays instead of hash tables, and

requires approximately 50 hours for a dataset of 40 Mb on a high-performance Compaq

Alpha machine with 16 Gb of RAM. However, his definition of unique oligos is slightly

37

different from ours.

3.2.1 Definition

Recall that a unique oligo perfectly matches a unigene (called target) but does not match any

other unigenes (called nontargets). Therefore, the definition of unique oligo depends on the

criterion of whether the oligo candidate matches the nontarget sequences. We call the latter

matching as “nontarget-match”.

Definition 3.2.1 Given a set of integer pairsP = {(l1, d1), . . . , (lh, dh)}, two stringsA and

B of equal length are said tonontarget-matcheach other, if there exists a pair(l′, d′) ∈ P

and there exist a substringA′ of A and a substringB′ of B starting at the same position,

such that:

• |A′| = |B′| = l′, and

• H(A′, B′) ≤ d′, whereH(A′, B′) is the number of mismatches betweenA′ andB′.

If string A nontarget-matches a substring of a unigeneX, then we say thatA nontarget-

matches the unigeneX. For specific projects, the thresholds listP can be decided accord-

ingly. For example, in [80],P = {(16, 0), (20, 1), (24, 2), (30, 3), (36, 4)}. We call a pair of

integers inP as oneconditionof nontarget-match.

Definition 3.2.2 Given a set of unigenes and a definition of nontarget-match, aunique oligo

is a string that appears exactly in one unigene but nontarget-matches none of the other uni-

genes.

38

Note that in the above definition the lengthl of the oligos is not fixed. Theoretically,l

can range from one to the maximum length of the unigenes. Practically,l ranges from 25 to

50 (e.g.,l = 36 in [80]). Our algorithm assumes that all the output oligos are of equal length,

which satisfies most practical needs.

3.2.2 Algorithm

We design an algorithm for finding unique oligos as follows. For each substringA in each

unigene, we check whetherA nontarget-matches any other unigene. To become a candidate

oligo, the oligo should also “survive” the filtration step (to be described in Section 3.4). Since

filtration takes much less time than checking nontarget-match and many candidates fail the

filtration, we perform the filtration step first. In the rest of this section we focus on nontarget-

match, and we assume the filtration has been done.

Our strategy is to prune the search space byq-gram filtration. The algorithm is based

on the following observation. Assume thatA andB are twol′-mers such thatH(A, B) ≤

d. Divide A andB into t = bd/2c + 1 substrings. That isA = A1A2 · · ·At andB =

B1B2 · · ·Bt, where the length of each substring isq = dl′/te, except possibly for the last

one. In practice, one can always choosel′ andd so thatl′ is a multiple oft and henceA and

B can be decomposed intot substrings of lengthq, which we callseeds(also see Section 2.3

in Chapter 2). It is easy to see that sinceH(A, B) ≤ d, at least one of the seeds ofA has

at most one mismatch with the corresponding seed ofB. Each condition(l′, d) is associated

with a seed length. For multiple conditions, we must choose the shortest seed.

39

Based on this idea, we design an efficient two-phase algorithm. In the first phase, we

index all seeds from the unigenes into a table, calledseed-table, such that given a query seed

s all the substrings in the unigenes that have at most one mismatch withs can be output

efficiently. In the second phase, for every oligo candidateA, we locate every substringB

in the unigenes that have one seed in common withA, using the seed-table. IfA nontarget-

matchesB, thenA is discarded. On average, the number of such substringB is much smaller

than the size of the unigene database, and we thus improve running time.

Phase 1. (SEED-INDEX) We hash allq-mers (seeds) from the input unigenes into a

dictionary (seed-table) with4q entries. (If4q cannot fit in the main memory, one could use

a hash table of an appropriate size.) Each entry of the table points to a list of locations

where theq-mer occurs in the unigene sequences. Using the table we can immediately locate

identical seeds in the unigenes. We also collect seeds that have exactly one mismatch with

each other as follows. For each table entry corresponding to a seedy, we record a list of other

seeds that have exactly one mismatch withy, by looking up table entries that correspond to

all the1-mutants ofy. This list is called amutant listof y.

Phase 2.(UNIQUE-TEST) For each oligo candidatex from unigeneA, we query all its

seeds against the seed-table to locate a list of potential matchesy1, . . . , yt in the unigenes

other thanA. Then we verify whetherx nontarget-matches any of theyi. The verification of

each condition of nontarget-match (see Definition 3.2.1) can be done by counting the number

of mismatches for everym-mer region betweenx andyi.

In the practice of unigene data analysis, we also need to consider the reverse strand of

40

each unigene. It is easy to modify the above algorithm to take this into account without a

significant increase in time complexity.

Time complexity. Assume that the total number of bases in the unigene database isn,

and the length of seed isq. The time complexity of phase one is simplyΘ(qn + 4q), where

the second term reflects the time needed to initialize the seed-table. If we insert seeds into the

table in lexicographic order, and we consider the overlapping between two successive seeds,

then the time can be easily reduced toΘ(n + 4q).

The time complexity of phase two isΘ(nV), whereV is the average time for verifying

oligo candidates by checking nontarget-match. Clearly,V depends on thefiltering efficiency

of seeds (i.e., the number of matches found divided by the number of potential matches)

and the time for verifying nontarget-match. We do not analyze the filtering efficiency here.

But one need to make sure that the seed lengthq is not too small, otherwise there may be

too many potential matches. On the other hand,q should not be too big, since the size of

seed-table depends exponentially onq.

3.2.3 Group-unique oligo

A unigene groupis a collection of unigene sequences that are similar with each other (e.g.,

they could originate from a gene family). It is useful to design oligos that are specific to a

unigene group rather than an individual unigene. In [20], a method called Hierarchical Probe

Design (HPD) is proposed for finding long oligos from conserved functional genes.HPD

uses clustering methods based on pairwise comparison, e.g. UPGMA, neighbor-joining etc.

41

It has been tested on only small datasets of two types of genes of totally 911 sequences. It is

easy to extend the idea for unique oligos to “group-unique oligos”.

Definition 3.2.3 For a given unigene groupG from a set of unigenesX, agroup-unique oligo

is a DNA string that appear exactly in each unigenes inG, but does not nontarget-match any

unigene ofX not inG.

The algorithm of designing group-unique oligos is similar to that for unique oligos, except

that the candidates are from every unigenes of the group. We scan unigenes of a group and

then clusterl-mer substrings into a table such that identicall-mers can be accessed by the

same entry. Clearly this can be done in linear time. The rest is similar to unique oligo

algorithm.

3.3 Popular oligo

The problem of finding infrequent and frequent patterns in sequences is a common task

called pattern discovery. A quite large family of pattern discovery algorithms has been pro-

posed in the literature and implemented in software tools. Without pretending to be exhaus-

tive, we mention MEME [4], PRATT [44, 43], TEIRESIAS [62], CONSENSUS[40], GIBBS

SAMPLER [50, 56], WINNOWER [58, 45], PROJECTION[72, 13], VERBUMCULUS [2], M I-

TRA [26], among others. Although these tools have been demonstrated to perform very well

on small and medium-size datasets, they cannot handle large datasets such as the barley uni-

gene dataset that we are interested in. In particular, some of these tools were designed to

42

attack the “challenge” posed by Pevzner and Sze [58], which is in the order of a few Kb.

Among the more general and efficient tools, we tried to run TEIRESIASon the 28 Mb barley

unigene dataset on an 1.2GHz Athlon CPU with 1GB of RAM, without being able to obtain

any result (probably due to lack of memory).

3.3.1 Definition

Simply speaking, a popular oligo is a string that approximately matches as many unigenes

as possible. Analogous to the Definition 3.2.1 of nontarget-match for unique oligos, we will

define “target-match” between an oligo and a substring in unigenes to control the specificity

of popular oligos. Again, we consider only mismatches. If the number of mismatches is too

small, we may miss valuable oligos; if it is too big, we may get many spurious popular oligos.

Therefore, the definition of target-match is crucial for the quality of output popular oligos.

In the following we define two versions of target-match, both of which require the pres-

ence of a perfectly matching segment called “core”. For the rest of the section, we assume

that stringsA andB have equal lengthl.

Definition 3.3.1 We say that there is acoreof lengthlc betweenA andB if A andB can be

partitioned into substrings asA = A1A2A3 andB = B1B2B3 with |Ai| = |Bi| such that (i)

|A2| = lc, and (ii) A2 = B2.

In the rest of the chapter, we assume that the length of corelc is given. In [77, 78, 80],

we have fixedlc = 20.

43

The difference between the following two definitions of target-match lays in the number

of mismatches allowed in the regions flanking the core. The first definition simply sets an

upper bound for the total number of mismatches outside the core.

Definition 3.3.2 We say that a stringA target-matchesa stringB if (i) there is a core between

them, and (ii)H(A, B) ≤ dmax.

The second definition considers not only the number of mismatches but also their loca-

tions. The parameters are valid only forl = 36 ([80]). The threshold values should be

changed for different values ofl andlc.

Definition 3.3.3 We say thatA andB target-matcheach other, if (i)there is a core between

A andB, and (ii)either one of the following two conditions is satisfied

• H(A, B) < 3, or

• H(A, B) = 3, and

– for any pair A′, B′ of 25-mers obtained by extending the core,H(A′, B′) < 2,

and

– for any pairA′′, B′′ of 30-mers obtained by extending the core,H(A′′, B′′) < 3.

We call any string that target-matchA as amutantof A, and the set of all mutants ofA as

the neighborhoodof A. If a popular oligo target-matches a substring in a unigene, we say

that the oligocoversthe unigene. LetX be the given set of unigenes. We call the number of

distinct unigenes fromX covered byA as the number ofcolorsof A in X , denotedCX (A).

44

Definition 3.3.4 Given a set of unigenesX and a positive integerCmin, a popular oligois a

stringA of lengthl such thatCX (A) ≥ Cmin.

3.3.2 Algorithm

Since popular oligos are not required to appear exactly in the unigene sequences, the number

of oligo candidates is much bigger than the size of unigenes. If we were to use Defini-

tion 3.3.2, the number of mutants of an oligo of lengthl is Θ(
(

l−lc
d

)
3d), wherelc is the core

length andd the maximum number of mismatches. For example, whend = 3, l = 33, and

lc = 20,
(

l−lc
d

)
3d =

(
13
3

)
33 = 7722 for the barley dataset. Hence, the straightforward al-

gorithm would have to count the number of colors for about7722 · 28 × 106 = 217 × 109

l-mers. Therefore, the “brute-force” method that enumerates neighborhoods ofl-mers in the

unigenes is computationally impractical, due to its memory requirement as soon as the input

size reaches the order of hundreds of thousands of bases (like the barley dataset).

We can reduce the search space using the same idea as in the algorithm for unique oligos,

except that here the role of seeds is played by cores. Observe that if a popular oligo covers

many unigenes, then many of these unigenes must contain length-l substrings that share

common cores. Based on this observation, we propose a heuristic strategy that first clusters

thel-mers in the unigene sequences into groups by their cores, and then enumerates candidate

l-mers by comparing the members of each cluster in a hierarchical way.

An outline of the algorithm is illustrated in Figure 3.1. Here, we determine the popularity

of the cores (i.e., length-lc substrings) from the unigenes in the first step. For each popular

45

core, we consider extension of the cores intol-mers by including flanking regions and clus-

ter them using a well-known hierarchical clustering method, calledunweighted pair group

method with arithmetic mean(UPGMA) [71]. We recall that UPGMA builds the tree bottom-

up in a greedy fashion by merging groups (or subtrees) of data points that have the smallest

average distance. Based on the clustering tree, we compute the common oligos shared by

the l-mers by performing set intersection. These common oligos shared by manyl-mers be-

come candidate popular oligos. Finally, we count the number of colors of these candidates,

and output the oligos with at leastT colors. A more detailed description is given below. A

complete example of the algorithm on a toy dataset is also given at appendix.

Phase 1.We compute the number of colors for alllc-mers in the unigenes to determine

whether they could be candidate cores for popularl-mers, using a hash table. According

to our definition, a popular oligo should have a popular core. We therefore set a threshold

Tc on the minimum number of colors of each popular core, depending onCmin, lc, l and the

set of unigenesX . All cores that have a number of colors belowTc are filtered out, and

considered “unpopular”. However, since anl-mer can target-match anotherl-mer with any

of its l − d + 1 cores, it is possible that we might miss some popular oligos that critically

depend on unpopular core. The parameterTc represents a trade-off between precision and

efficiency. We will show in Section 3.5 the effect of changingTc on the output. We will see

that in practice we might miss only a negligible number of popular oligos.

Phase 2. Here we collect the substrings flanking the popular cores. For each popular

core, we constructl − lc + 1 sets of substrings, one for each possible extension of the core

46

Cut tree

1

2

3

1

2

3

1

2

3

set 17set 2set 1

. . .

17 sets of 36-mers that share the core at a specific position

popular cores

1 2 3

1 2

Table of

1 2 3

1 2

Table of cores

Clustering

Compute candidates

Build tree

Compute

Coverage

Collect flanking regions

List of candidates

Select

Hashing

Input

EST

Discard

unsuitable

oligos

Compute

Coverage

Output

oligos

Compression

& correction

Figure 3.1: An overview of the algorithm for selecting popular oligos. For convenience of
illustration, the length of the oligos is assumed to bel = 36, and the length of the cores is
assumed to belc = 20.

into anl-mer.

Phase 3. For each set of extendedl-mers, we would like to identify alll-mers (oligo

candidates) that target-match many of these substrings. In order to achieve this efficiently,

47

we first cluster the substrings according to their mutual Hamming distance using the hierar-

chical clustering method UPGMA. In the process of building the clustering tree, whenever

the Hamming distance between some leaves in the tree is zero we compress the distance ma-

trix by combining the identical strings into one entry. This significantly reduces the running

time not only because the tree becomes smaller, but also because the number of common

mutants of two differentl-mers is much less than that of two identical ones. As we can see

later, a significant proportion of the running time is spent on the intersection of the sets of

d-mutants. Compressing the distance matrices avoids intersecting identical sets ofd-mutants,

which is expensive and also useless. We then enumerate the set of mutants for each substring

represented at the leaves and traverse the tree bottom-up.

At each internal nodeu, we compute the intersection of the two sets attached to the chil-

dren. This intersection represents all thel-mers that target-match all the leaves (substrings)

under the nodeu. As soon as the intersection of some internal node, sayu, becomes empty,

we cut the tree atu. Each subtree represents a cluster, and the set ofl-mers attached to the

root are the elements of the cluster. The size of the cluster is therefore equal to the number of

leaves in the tree. Because small clusters are unlikely to contain popular oligos, we discard

all trees whose size is smaller thanCmin (the minimum number of colors of a popular oligo).

At the end of this process, we obtain a collection of sets of candidate popular oligos.

Phase 4.Given the candidate popular oligos, we do the filtration step to discard unsuit-

able candidates and select a subset of oligos to maximize coverage rate. Because the oligo

filtration and selection steps are necessary also for unique oligo, we will discuss these steps

48

in Section 3.4.

Time complexity. Phase 1 costs timeO(lcn). In phase 2, if the number of popular

cores selected in the first step isp and the average number of occurrence of the cores isr,

this phase costsO(nrl)). For phase 3, the time for building a UPGMA tree, including the

computation of the distance matrix, isO((l− lc)r
2), wherer stands for the number of strings

to be clustered. Since a (binary) UPGMA tree withr leaves has2r − 1 nodes, the time

for traversing (and pruning) the tree isO(r
(

l−lc
d

)
3d), where

(
l−lc

d

)
3d is the upper-bound of

the number of mutants at each leaf, for both Definition 3.3.2 and Definition 3.3.3 of target-

match. Here we assume that the set intersection can be done in linear time using hashing

techniques. Finally for phase 4, if the total number of candidates ism, counting the colors

for the candidates, excluding the time for radix-sort, costs timeO(rm(l − lc)).

3.4 Oligo filtration and selection

As it turns out, the set of unique, popular and group-unique oligos generated by the algo-

rithms described above cannot be used directly because in practice it produces too many

candidates. For example, when the thresholdTc on the color of the cores is 5, the number of

candidates of popular oligos generated from the Barley unigene database is about 527 mil-

lions. In this section, we describe post-processing phase for reducing the number of candidate

oligos.

In the first step of post-processing, calledoligo filtration, we discard unsuitable oligos

49

based on GC content, melting temperatures, self-annealing of 36-mers, low-complexity, and

the presence of repetitive regions. All these parameters can be adjusted by the user. The melt-

ing temperatureTm is calculated using the formula in [12] as implemented in PRIMER3 [65].

Self-annealing of oligos is determined by performing an end-free sequence alignment be-

tween the 22-mer prefix and the reverse complement of the 22-mer suffix of an oligo. An

oligo is discarded if the alignment score is higher than a predetermined threshold. We use

the program DUST [38] to determine low-complexity regions in oligos. Finally, we filter

out those oligos that have significant matches against repeat database, e.g., Triticeae Repeat

Sequence Database (TREP,http://wheat.pw.usda.gov/ITMI/Repeats/) in the

case of barley, or any other repeat database provided by the user.

In the second step of post-processing, we select oligos according to their distribution

among unigenes. Here, for a popular oligo, the “distribution” means the set of covered

unigenes, while for a unique oligo it means the location within a unigene. Our objective

is to select a small number of oligos that can represent as much information about unigenes

as possible.

Unique oligo selection. The selected unique oligos should be as different as possible. Be-

cause a substring of lengthl can overlapl − 1 symbols with other substrings, oligos whose

position is close to each other in a unigene are more likely to have similar composition.

However, we prefer oligos that originate from diverse parts of unigene sequences. There-

fore, the objective is to select a subset of oligos whose positions are as separated as possible.

50

http://wheat.pw.usda.gov/ITMI/Repeats/

We formulate the problem as a combinatorial optimization problem calledsparsest subse-

quence: Given a sequence of integersp1, p2, ..., pn in increasing order, find a subsequence of

sizem, such that the minimum difference of two successive numbers in the subsequence is

maximized.

An easy dynamic programming algorithm ([25]) can solve the problem in polynomial

time. Let us call the minimum difference of two successive numbers asgap. Let D [i, j]

denote the maximum gap among the sequences ofj numbers ending withPi, for 1 ≤ i ≤ m

and1 ≤ j ≤ m. We have the following recursive relation:

D[i, j] = max
k<i

(min(D[k, j − 1], Pi − Pk)).

By binary searching fork giving the maximum, we can solve the problem in timeO(nm log n).

The running time can be improved toO(n + m log n log(n/m)) ([18]). However, since al-

gorithm in [18] is complicated and the sparsest subsequence problem is not the bottleneck of

the whole system, we did not employ this faster algorithm.

Popular oligo selection. In general, each popular oligo covers a set of unigenes, and each

unigene is covered by a set of oligos. For a setS of oligos, thecoverage rateis the ratio

between the number of unigenes covered by the oligos inS and the size of the setS. Our

objective is to maximize the coverage rate, i.e., to select a set of popular oligosS from the

large pool of candidates, such that the number of covered unigenes is maximized and the

number of selected popular oligos is minimized. More specifically, while we are trying to

51

reduce the size ofS, we make sure that the number of covered unigenes will not drop. It

turns out that the general problem of oligo compression is a variant of the SET COVERING

problem, which is known to be NP-complete (see [30]).

Since the general problem is NP-complete, it is unlikely that there exists a polynomial-

time algorithm that finds the optimal solution. As a workaround, we use a greedy strategy

that, in general, will find a suboptimal solution. The following paragraph is a rephrasing of

the greedy algorithm for the SET COVERING ([42]) problem in the context of popular oligo

selection.

In the first step, for each covered unigene we select a set of oligos with high colors, as

follows. When a candidate oligow is generated, we obtain the set of unigenes covered by

w. For each covered unigenes, we decide whether oligow should be discarded or kept as the

top candidate. At the end of this step, we get a pool of unigenes each of which is covered

by several oligos. In the second step, we select an oligo with the highest color, and remove

all unigenes covered by this oligo from the unigene pool. Then, we update the colors of all

other oligos. We repeat the second step until the unigene pool becomes empty. Note that it is

important to update the colors iteratively because many candidates of high initial colors have

big overlaps of covered unigenes with each other. The method is simple and space efficient

since it can compress oligos on-line and avoid storing hundreds of millions of candidates in

main memory.

52

3.5 Results

3.5.1 Implementation

We have implemented the above algorithms into the software OLIGOSPAWN, developed us-

ing the GNU C++ compiler under the Linux operating system. The executable for Linux/i386

can be downloaded from the OLIGOSPAWN web site. The source code is also available from

the same web site under the GPL license. Any platform for which GNU C++ is available

(Windows and MacOS among others) would be able to compile and run the stand-alone

software. The web server is running athttp://oligospawn.ucr.edu/ and it was

developed using PHP (http://www.php.net/), which is an open-source scripting lan-

guage. The web server has been tested with Netscape, Mozilla, Safari, and Internet Explorer

(see [80] for more details).

3.5.2 Simulations

Popular oligo. To evaluate the performance of our algorithm for designing popular oligos,

we first ran a few simulations as follows. We generated a set of artificial unigenes by creat-

ing first a set ofk random sequences and then inserting a controlled number of approximate

occurrences of a given set of oligos, i.e., each of the inserted strings target-match one of the

given oligos. We used the Definition 3.3.2 for target match, where the number of mismatches

outside the core is at mostd. The initial sets of oligos, denoted byI1, . . . , Is, were also gener-

ated randomly. Each oligoIi was assigned a predetermined number of colorsCi. We decided

53

http://oligospawn.ucr.edu/
http://www.php.net/

d = 2 d = 3
Tc = 10 0.0155 0.0500
Tc = 15 0.0003 0.0033
Tc = 20 0.0048 0.0005
Tc = 25 0.0008 0.0023
Tc = 30 0.0005 0.0028

Table 3.1: The average relative errors between the number of colors in the input and the
number of colors in output for a simulated experiment (n = 1.44 × 106, t = 2000, lc = 20,
cmax = 100, s = 100).

that the distribution of theCi should be Gaussian, i.e., we definedCi = cmaxe
−i2/2/

√
2π,

wherecmax is a fixed constant which determines the maximum number of colors. As said,

the positions in-between the oligos were filled with random symbols over the DNA alphabet.

We then ran our program for popular oligos on the artificial unigenes dataset and output

a set of candidate oligosO1, . . . , Ot with their respective numbers of colorsC ′
1, . . . , C

′
t. The

output oligos were sorted by colors, that isC ′
i ≥ C ′

j, if i < j.

Since the output contained redundant candidates that came from the mutations of the

original popular oligos, we removed those candidates that were mutants of another oligo with

an higher number of colors. More precisely, ifOi was a mutant ofOj, and1 ≤ i < j ≤ t,

thenOj was discarded. This “compression step” did not eliminate good candidates for the

following reason. Since the input oligosI1, . . . , Is were generated randomly they were very

unlikely to be similar. As a consequence, the corresponding output oligos were also unlikely

to be eliminated. Moreover, the above extra step is unnecessary for real data, since a good

oligos may not match exactly in unigenes. It is only for the convenience of validation

Finally, we compared the pair(I, C) with (O,C ′). The more similar(O, C ′) is to (I, C),

54

the better is our algorithm. Recall thatI andO were sorted by decreasing number of of

colors. We compared the entries in(I, C) with the ones in(O, C ′), position by position. For

each1 ≤ i ≤ u, whereu = min(s, t), we computed the average difference betweenC and

C ′ asE = (1/u)
∑u

i=1
|Ci−C′

i|
C′

i
. If we assume thatI andO contain the same set of oligos, then

the smaller isE, the more similar is(I, C) to (O,C ′). To validate this assumption, we also

searched the list of oligosI in O, to determine whether we missed completely some oligos.

Table 3.1 shows the value ofE for four runs of the program on a dataset ofn = 1.44×106

bases composed byt = 2000 sequences each of size720. We generated a set ofs = 100

oligos with a maximum number of colorscmax = 100. In the analysis, we fixed the length

of the core to belc = 20, whereas the maximum number of mismatchesd outside the core

and the thresholdTc were varied. The results show that the average relative error is below

2%. We also compared the list of input oligos with the list of output oligos and we found

that sometimes the program misses one or two oligos out of 100. However, the number of

colors of these missed oligos is always near the thresholdTc. We never miss an oligo whose

number of color is aboveTc + 10.

Group-unique oligo. We also use BLAST to test theoligo specificityof group-unique

oligos, where the specificity is the likelihood of matching nontarget unigenes. Since unique

oligos can be regarded as a special case of group-unique oligos where each group consists of

one unigene, the simulation can also be applied to unique oligos.

Running on a setX of unigenes, OLIGOSPAWN produces a list of oligos, where each oligo

P corresponds to a set of unigenesUp. Then, we query oligoP againstX using BLAST.

55

E-value cut-off 1e-008 1e-007 1e-006 1e-005 0.0001 0.001
sensitivity(%) 95.9 95.4 94.9 94.2 93.2 90.4
selectivity(%) 99.2 99.6 99.8 99.9 100 100

Table 3.2: Specificity of group-unique oligo by OLIGOSPAWN validated by BLAST.

With a specified threshold of E-value, we obtain a list of unigenes inX , denoted byVp,

whichP covers by the matching criteria of BLAST. LetVp denote the actual list of unigenes

that oligoP covers. Then, we set the sensitivity as
∑

p |Up ∩ Vp|/
∑

p |Vp| and selectivity as∑
p |Up ∩ Vp|/

∑
p |Up|.

In Table 3.2, each column corresponds to a threshold of BLAST e-value. Smaller e-value

cut means that the BLAST matches between oligos and the target regions in unigenes are

less likely to be random. Therefore, the bigger e-value cut means more oligo occurrences

will be found by BLAST. When e-value cuts increase from left to right, the sensitivity of

OLIGOSPAWN decreases and selectivity increases. When e-value cut is 1e-008, even exact

matches between oligos and unigenes are considered not significant enough by BLAST.

Therefore, the specificity of group-unique oligos designed by OLIGOSPAWN is high.

3.5.3 Running on real data

The main dataset is a collection barley unigenes from HARVEST. Before doing the searches,

we first cleaned the dataset by removing PolyT and PolyA repeats.

The efficiency of our algorithm critically depends on the statistical distribution of the

seeds in the dictionary. The statistics of the seeds in our experiment (before the extension

56

number of occurrencesnumber of seeds
0 242399

1-9 3063288
10-19 708745
20-29 120698
30-39 31637
40-49 11908

50-5049 15629

Table 3.3: Distribution of frequencies of seeds in barley unigenes. The left column is the
range of the number of occurrences. The right column is the number of seeds with a certain
number of occurrences.

phase) is shown in Table 3.3. Clearly, most seeds occur less than20 times in the unigenes

and this is the main reason why our algorithm was able to solve the dataset efficiently. The

final distribution of unique oligos is shown in Figure 3.2.

Our second task was to search for popular oligos with lengthl = 36 and core length

lc = 20. We considered different choices for the maximum number of mismatchesd outside

the core and the thresholdTc on the minimum number of colors for the popular cores. The

thresholdCmin on the size the clusters was set equal to the value of thresholdTc.

The distribution of the number of colors of the cores is shown in Table 3.4. From the table

we can see that the number of cores decreases almost exponentially as the number of colors

increases. On the other hand, cores with low colors are unlikely to contribute to popular

oligos. Therefore, it is important to filter them out to increase the efficiency.

The running time of this program varies with the parametersd andTc, as shown in the

Figure 3.3. The memory used in the program was mainly for storing the candidate popular

oligos. In general, about 64 MB suffices since the program reuses the memory frequently.

57

Figure 3.2: Distribution of unique oligos. The horizontal axis stands for the percentage of
unique oligos over all36-mers in a unigene, and the vertical axis stands for the number of
unigenes whose unique oligos are at a certain percentage of all its36-mers.

Figure 3.3 also shows the number of candidates generated by the algorithm (in millions),

the number of unigenes covered, the final number of popular oligos, and the coverage ratio,

for different choices of the thresholdTc.

3.5.4 Overgo hybridization

Popular 36-mer oligos were generated by an older version of the software OLIGOSPAWN with

thresholdTc = 4, GC content in the range 45–56%. Since the older version of OLIGOSPAWN

did not yet offer filtering against repeat databases this process was supplemented by some

58

colors number of cores
1 22523412

2-10 2128677
11-20 5148
21-30 1131
31-40 492
41-50 346
51-60 242
61-70 77
71-80 34
81-90 29
91-100 43
101-176 19

Table 3.4: Distribution of the number of colors of the cores. The left column is the range
of the number of colors. The right column is the number of cores with a certain number of
color.

manual actions, as follows. Oligos matching repetitive DNA and rRNA were filtered out

with BLAST searches (BLASTn) against TREP and the TIGRGramineaerepeat databases

(Hordeum, Oryza, Sorghum, Triticum, Zea) (http://www.tigr.org/tdb/e2k1/plant.

repeats/ [57]). Following this search, 36-mers with 26 or more consecutive matches to

repetitive sequences were discarded. Out of 698 initially proposed popular oligos, a total of

25 were discarded by this method. All these filtering step are now included in OLIGOSPAWN

(in particular BLAST is not required to run OLIGOSPAWN).

The popular 36-mers were also “blasted” (by BLASTx) against the SwissProtein (http:

//us.expasy.org/sprot/) and NR protein databases for annotation purposes. The

36-mers with nine of twelve possible amino acids identical to the subject sequence were cho-

sen for further testing. Out of the initial 698 popular 36-mers analyzed, 134 passed this crite-

rion. Finally, popular oligos classified as transcription and signal transduction components,

59

http://www.tigr.org/tdb/e2k1/plant.repeats/
http://www.tigr.org/tdb/e2k1/plant.repeats/
http://us.expasy.org/sprot/
http://us.expasy.org/sprot/

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50 55

core coverage threshold

unigene covered oligos candidates (M) time (min) coverage ratio

½h

2½h

18½h

2782

896

312329

38

7

Figure 3.3: Results of running the algorithm on the Barley dataset. Shown are the number
of candidates generated by the algorithm (in millions), the number of unigenes covered, the
final number of popular oligos, the coverage ratio, and the time taken by the algorithm (for
different choices ofTc).

a total of 18 out of these 134, were used for probing the Morex barley BAC library [76].

Overgo labeling and hybridization was done essentially as described by Rosset al.[63, 36].

Briefly, probes were radioactively labeled individually with32P-dATP and32P-dCTP. For

background detection, a 36-mer representing theEscherichia coligenome was also labeled [36].

Hybridization using a mixture of all 19 probes was then performed on high-density filters of

the 6.3× Morex barley BAC library [76], followed by washing and exposure to autoradiog-

raphy film [63]. An average of 140 BAC clones per filter (17 filters) were scored as positive,

yielding a total of about 2,400 positive BAC clones from only 18 popular overgos. Screening

with 18 unique overgos would be expected to identify only about 113 total clones (17× 6.3).

Therefore, the 18 popular oligos described above netted about 22 times as many positive

60

clones as would unique oligos. Results with other sets of popular oligos not described in this

manuscript have given comparable results. Therefore, we conclude that the popular oligo

algorithm provides a substantial gain of efficiency in probing BAC genomics libraries for

gene-containing clones.

The number of positive BAC clones identified with various pools sizes of unique oligos

has consistently been in the range of 6 to 8 BACs per unique oligo. For example, pools of 192

unique oligos repeatedly provide about 1200 to 1600 positive BAC addresses. Furthermore,

checking the sequences of unique oligos with BLAST has consistently provided assurance

that our unique oligo algorithm indeed is as selective as it is intended to be.

61

Chapter 4

Minimum Common String Partition

In the previous two chapters, we presented approaches for finding repetitive patterns in bi-

ological sequences. In this chapter, we aim to infer evolutionary and functional relations

among the discovered repeats. In the wide range of problems in this domain, we address

the problem of genome rearrangement with multigene families, where duplicated genes are

treated as repetitive patterns. In particular, we address the minimum common string partition

problem (MCSP), which has tight connection with the problem of sorting by reversals with

duplicates, a key problem in genome rearrangement. The restricted version ofMCSP where

each letter occurs at mostk times in each input string is denoted byk-MCSP.

We show in Section 4.2 that2-MCSP (and thereforeMCSP) is NP-hard and, moreover,

even APX-hard. Section 4.3 presents a 1.5-approximation and a 1.1037-approximation for

2-MCSP. This chapter is mainly from [31, 32], except that Section 4.3.1 is from [16].

62

4.1 Preliminaries

String comparison is a fundamental problem in computer science, with applications in areas

such as computational biology, text processing and compression. Typically, a set of string

operations is given (e.g., delete, insert and change a character, move a substring or reverse a

substring) and the task is to find the minimum number of operations needed to convert one

string to the other. Edit distance or permutation sorting by reversals are two well known

examples. In this chapter we address, motivated mainly by genome rearrangement applica-

tions, the minimum common string partition problem (MCSP). ThoughMCSP takes a static

approach to string comparison, it has tight connection to the problem of sorting by reversals

with duplicates, a key problem in genome rearrangement.

A partition of a stringA is a sequenceP = (P1, P2, . . . , Pm) of strings whose concatena-

tion is equal toA, that isP1P2 . . . Pm = A. The stringsPi are called theblocksof P. Given

a partitionP of a stringA and a partitionQ of a stringB, we say that the pairπ = 〈P ,Q〉

is acommon partitionof A andB if Q is a permutation ofP. Theminimum common string

partition problem is to find a common partition ofA, B with the minimum number of blocks.

The restricted version ofMCSP where each letter occurs at mostk times in each input string,

is denoted byk-MCSP. We denote by#blocks(π) the number of blocks in a common parti-

tion π. We say that two stringsA andB arerelatedif every letter appears the same number

of times inA andB. Clearly, a necessary and sufficient condition for two strings to have a

common partition is that they are related.

63

Thesignedminimum common string partition problem (SMCSP) is a variant ofMCSP

in which each letter of the two input strings is given a “+” or “−” sign (in genome rearrange-

ment problems, the letters represent different genes on a chromosome and the signs represent

orientation of the genes). For a stringP with signs, let−P denote the reverse ofP , with each

sign flipped. A common partition of two signed stringsA andB is the pairπ = 〈P ,Q〉 of

a partitionP = (P1, P2, . . . , Pm) of A and a partitionQ = (Q1, Q2, . . . , Qm) of B together

with a permutationσ on [m] such that for eachi ∈ [m], eitherPi = Qσ(i), or Pi = −Qσ(i).

New results. In this paper, we show that2-MCSP (and thereforeMCSP) is NP-hard and,

moreover, even APX-hard. We also describe a1.1037-approximation for2-MCSP and a

linear time4-approximation algorithm for3-MCSP. All of our results apply also to signed

MCSP. We are not aware of any better approximations.

4.1.1 Related work

The problem of1-MCSP coincides with the breakpoint distance problem of two permuta-

tions [75] which is to count the number of ordered pairs of symbols that are adjacent in the

first string but not in the other; this problem is obviously solvable in polynomial time. Sim-

ilarly as the breakpoint distance problem does, most of the rearrangement literature works

with the assumption that a genome contains only one copy of each gene. Under this as-

sumption, a lot of attention was given to the problem of sorting by reversals.Reversalis an

operation that reverses a specified substring of a given string; in the case of signed strings,

64

it also flips the sign of each letter in the reversed substring. In the problem ofsorting by

reversals, the task is to determine the minimum number of reversals that transform a given

stringA into a given stringB. The problem is solvable in polynomial time for signed strings

containing only one copy of each symbol [39] but is NP-hard for unsigned strings [15]. The

assumption about uniqueness of each gene is unwarranted for genomes with multi-gene fam-

ilies such as the human genome [67]. Chen et al. [16] studied a generalization of the problem,

the problem ofsigned reversal distance with duplicates(SRDD); according to them,SRDD

is NP-hard even if there are at most two copies of each gene. They also introduced the signed

minimum common partition problem as a tool for dealing withSRDD. Chen et al. observe

that for any two related signed stringsA andB, the size of a minimum common partition

and the minimum number of reversal operations needed to transformA to B, are within a

multiplicative factor2 of each other. (In the case of unsigned strings, no similar relation

holds: the reversal distance ofA = 1234 . . . n andB = n . . . 4321 is 1 while the size of min-

imum common partition isn − 1.) They give a1.5-approximation algorithm for2-MCSP

(see Subsection 4.3.1 for details), and use the algorithm to approximateSRDD. Christie and

Irving [17] consider the problem of (unsigned) reversal distance with duplicates (RDD) and

prove that it is NP-hard even for strings over binary alphabet.

Chrobak et al. [19] analyze a natural heuristic forMCSP, the greedy algorithm: itera-

tively, at each step extract a longest common substring from the input strings. They show that

for 2-MCSP, the approximation ratio is exactly3, for 4-MCSP the approximation ratio is

Ω(log n); for the generalMCSP, the approximation ratio is betweenΩ(n0.43) andO(n0.67).

65

The same bounds apply forSMCSP. In [31] Kolman gives a linear time 4-approximation

algorithm for 3-MCSP. In [47] Kolman describes a simple modification of the greedy algo-

rithm; the approximation ratio of the modification isO(k2) for k-MCSP and it runs in time

O(k · n). The same bounds hold also fork-SMCSP andk-SRDD. Recently, [46] presents a

linear timeΘ(k)-approximation algorithm fork-MCSP.

Closely related is the problem of edit distance with moves in which the allowed string op-

erations are the following: insert a character, delete a character, move a substring. Cormode

and Muthukrishnan [22] describe anO(log n log∗ n)-approximation algorithm for this prob-

lem. Shapira and Storer [69] observed that restriction to move-a-substring operations only

(instead of allowing all three operations listed above) does not affect the edit-distance of two

strings by more than a constant multiplicative factor. Since the size of a minimum common

partition of two strings and their distance with respect to move-a-substring operations differ

only by a constant multiplicative factor, the algorithm of Cormode and Muthukrishnan yields

anO(log n log∗ n)-approximation forMCSP.

4.1.2 Combinatorial properties ofMCSP

Throughout the chapter, we assume that the two stringsA, B given as input toMCSP are

related. This is a necessary and sufficient condition for the existence of a common partition.

Given a stringA = a1 . . . an, for the sake of simplicity we will use the symbolai to

denote two different things. First,ai may denote the specific occurrence of the letterai in

the stringA, namely the occurrence on positioni. Alternatively,ai may denote just the letter

66

itself, without any relation to the stringA. Which alternative we mean will be clear from

context.

Common partitions as mappings. Given two stringsA = a1 . . . an andB = b1 . . . bn

of lengthn, a common partitionπ of A andB can be naturally interpreted as a bijective

mapping fromA to B (that is, if P1, . . . , Pm is the partition ofA andQ1, . . . , Qm is the

partition ofB in π, then for eachj ∈ [m], the letters fromPj are mapped from left to right

to the correspondingQj′), and this in turn as a permutation on[n]. With this understanding

in mind, we say that a pair of consecutive positionsi, i + 1 ∈ [n] is a breakof π in A if

π(i + 1) 6= π(i) + 1. In other words, a break is a pair of letters that are consecutive inA but

are mapped byπ to letters that are not consecutive inB. The number of breaks inπ will be

denoted by#breaks(π).

Clearly, not every permutation on[n] corresponds to a common partition ofA andB. We

say that a permutationρ on [n] preserves lettersof A andB, if ai = bρ(i), for all i ∈ [n].

Then, every letter-preserving mappingρ can be interpreted as a common partitionρ, and

#blocks(ρ) = #breaks(ρ) + 1. On the other hand, for a common partitionπ = 〈P ,Q〉 in-

terpreted as a permutation,#blocks(π) ≥ #breaks(π) + 1 (the inequality is due to possible

unnecessary breaks inπ). Thus, theMCSP problem is to find a permutationπ on [n] that

preserves letters ofA andB and has the minimum number of breaks. An alternative formula-

tion is that the goal is to find a letter-preserving permutation that maps the maximum number

of pairs of consecutive letters inA to pairs of consecutive letters inB.

67

Common partitions and independent sets. Let Σ denote the set of all letters that occur in

A. A duo is an ordered pair of lettersxy ∈ Σ2 that occur consecutively inA or B (that is,

there exists ani such thatx = ai andy = ai+1, or x = bi andy = bi+1). A specificduo is an

occurrence of a duo inA or B. The difference is that a duo is just a pair of letters whereas a

specific duo is a pair of letters together with its position. Amatchis a pair(aiai+1, bjbj+1) of

specific duos, one fromA and the other one fromB, such thatai = bj andai+1 = bj+1. Two

matches(aiai+1, bjbj+1) and(akak+1, blbl+1), i ≤ k, arein conflict if either i = k andj 6= l,

or i + 1 = k andj + 1 6= l, or i + 1 < k and{j, j + 1} ∩ {l, l + 1} 6= ∅. Informally, two

matches are in conflict if they cannot be realized at the same time.

ab c ab
ab abc

 ab c ab
ab ab c

a bc ab
ab a bc

abc ab

ab ab c

abc ab
ab abc

Figure 4.1: Conflict graph forMCSP instanceA = abcab andB = ababc.

68

We construct aconflict graphG = (V, E) of A andB as follows. The set of nodesV

consists of all matches ofA andB and the set of edgesE consists of all pairs of matches that

are in conflict. Figure 4.1 shows an example of a conflict graph. The number of vertices inG

can be much higher than the length of the stringsA andB (and is trivially bounded byn2).

Lemma 4.1.1 For A = a1 . . . an and B = b1 . . . bn, let MIS(G) denote the size of the

maximum independent set of the conflict graphG of A andB andm denote the number of

blocks in a minimum common partition ofA andB. Then,n−MIS(G) = m .

Proof. Given an optimal solution forMCSP, let S be the set of all matches that are used in

this solution. Clearly,S is an independent set inG and|S| = n− 1− (m− 1).

Conversely, given a maximum independent setS, we cut the stringA betweenai andai+1

for every specific duoaiai+1 that does not appear in any match inS, and similarly forB. In

this way,n − 1 − |S| duos are cut inA and also inB, resulting inn − |S| blocks ofA and

n− |S| blocks ofB. Clearly, the blocks fromA can be matched with the blocks fromB, and

thereforem ≤ n− |S|. 2

Maximum independent set is an NP-hard problem, yet, two approximation algorithms for

MCSP described in this paper make use of this reduction.

MCSP for multisets of strings. For the proofs in later sections we need a slight general-

ization of theMCSP. Instead of two stringsA, B, the input consists of two multisetsA,B

of strings. Similarly as before, a partition of the multisetA = {A1, . . . , Al} is a sequence of

69

strings

A1,1, . . . , A1,k1 , A2,1, . . . , A2,k2 , . . . , Al,1, . . . , Al,kl
,

such thatAi = Ai,1 . . . , Ai,ki
for i ∈ [l]. For two multisets of strings, the common partition,

the minimum common partition and the related-relation are defined similarly as for pairs of

strings.

Let A = {A1, . . . , Al} andB = {B1, . . . , Bh} with h ≤ l, be two related multisets of

strings, and letx1, y1, . . . , xl−1, yl−1 be2l− 2 different letters that do not appear inA andB.

Considering two strings

A = A1x1y1A2x2y2A3 . . . xl−1yl−1Al ,

B = B1y1x1B2y2x2B3 . . . yh−1xh−1Bhyhxh . . . yl−1xl−1 , (4.1)

it is easy to see that an optimal solution for the classicalMCSP instanceA, B yields an

optimal solution for the instanceA,B of the multiset version, and vice versa. In particular, if

m′ denotes the size of aMCSP of the two multisets of stringsA andB, andm denotes the

size of aMCSP of the two stringsA andB defined as above, then

m = m′ + 2(l − 1) . (4.2)

Thus, if one of the variants of the problems is NP-hard, so is the other.

70

4.2 Hardness of approximation

The main result of this section is the following theorem.

Theorem 4.2.1 2-MCSP and2-SMCSP are APX-hard problems.

We start by proving a weaker result.

Theorem 4.2.2 2-MCSP and2-SMCSP are NP-hard problems.

Proof. Since an instance ofMCSP can be interpreted as an instance ofSMCSP with all

signs positive, and since a solution ofSMCSP with all signs positive can be interpreted as

a solution of the originalMCSP and vice versa, it is sufficient to prove the theorems for

MCSP only.

The proof is by reduction from the maximum independent set problem on cubic graphs

(3-MIS) [30]. Given a cubic graphG = (V, E) as an input for 3-MIS, for each vertexv ∈ V

we create a small instanceIv of 2-MCSP. Then we process the edges ofG one after another,

and, for each edge(u, v) ∈ E, we locally modify the two small instancesIu, Iv. The final

instance of2-MCSP, denoted byIG, is the union of all the small (modified) instancesIv. We

will show that a minimum common partition ofIG yields easily a maximum independent set

in G.

The small instanceIu = (Xu, Yu) for a vertexu ∈ V is defined as follows (cf. Figure 4.2):

71

du

bu

bu au bu

cu du au bu eu du eu fu hu fu gu lu hu ku gu

hucu du eu bu eu fu gu fu hu kuau

Figure 4.2: An instanceIu in the proof of NP-hardness of2-MCSP. The lines represent all
matches, with the bold lines corresponding to the matches in the minimum common partition
Ou.

Xu = {du, aubu, cudueu, bueufugu, fuhuku, gulu, hu} (4.3)

Yu = {bu, cudu, aubueu, dueufuhu, fugulu, huku, gu}

where all the letters in the set∪u∈V {au, bu, . . . , lv} are distinct. It is easy to check thatIu has

a unique minimum common partition, denoted byOu, namely:

Ou = 〈(du, aubu, cudu, eu, bu, eufu, gu, fu, huku, gulu, hu)

(bu, cudu, aubu, eu, du, eufu, hu, fu, gulu, huku, gu)〉

We observe that forXG =
⋃

u∈V Xu andYG =
⋃

u∈V Yu, IG = (XG, YG) is an instance

of 2-MCSP, and the superposition of allOu’s is a minimum common partition ofIG. For the

sake of simplicity, we will sometimes abuse the notation by writingIG =
⋃

u∈V Iu.

The main idea of the construction is to modify the instancesIu, such that for every edge

(u, v) ∈ E, a minimum common partition ofIG =
⋃

u∈V Iu coincides with at most one of

72

the minimum common partitions ofIu andIv. This property will make it possible to obtain

a close correspondence between maximum independent sets inG and minimum common

partitions ofIG: if Ov denotes a minimum common partition of (the modified)Iv andO′
v

denotes the common partition of (the modified)Iv derived from a given minimum common

partition ofIG, thenU = {u ∈ V | O′
u = Ou} will be a maximum independent set ofG. To

avoid the need to use different indices, we useIG to denote
⋃

u∈V Iu after any number of the

local modifications; it will always be clear from context to which one are we referring.

For description of the modifications, a few terms will be needed. The lettersau andcu in

Xu are calledleft sockets ofIu and the lettersku andlu in Xu areright sockets. We observe

that all the four lettersau, cu, ku, lu appears only once inXG (and once inYG). Given two

small instancesIu andIv and a socketsu of Iu and a socketsv of Iv, we say that the two

socketssu andsv arecompatible, if one of them is a left socket and the other one is a right

socket. Initially, all sockets arefree.

For technical reasons, we orient the edges ofG in such a way that each vertex has at most

two incoming edges and at most two outgoing edges. This can be done as follows: find a

maximal set (with respect to inclusion) of edge-disjoint cycles inG, and in each cycle, orient

the edges to form a directed cycle. The remaining edges form a forest. For each tree in the

forest, choose one of its nodes of degree one to be the root, and orient all edges in the tree

away from the root. This orientation will clearly satisfy the desired properties.

We are ready to describe the local modifications. Consider an edge
−−−→
(u, v) ∈ E and a free

right socketsu of Iu and a free left socketsv of Iv. That is,Rsu ∈ Xu andsvS ∈ Xv, for

73

some stringsR andS. We modify the instancesIu = (Xu, Yu) andIv = (Xv, Yv) as follows

Xu ← Xu ∪ {RsuS} − {Rsu} , Xv ← Xv ∪ {su} − {svS} ,

Yu ← Yu , Yv ← Yv with sv renamed bysu

(4.4)

(the symbols∪ and− denote multiset operations).

After this operation, we say that the right socketsu of Iu and the left socketsv of Iv are

used(not free). Note that inYv, the lettersv is renamed tosu. All other sockets ofIu and all

other sockets ofIv that were free before the operation remain free. We also note thatIu and

Iv are not2-MCSP instances. However, for every letter, the number of its occurrences is the

same inXG and inYG, namely at most two. Thus,IG is still a2-MCSP instance.

The complete reduction from a cubic graphG = (V, E) to a2-MCSP instance is done

by performing the local modifications (4.4) for all edges inG.

Reduction of3-MIS to 2-MCSP

1. ∀u ∈ V , defineIu by the description (4.3),

2. ∀
−−−→
(u, v) ∈ E, find a free right socketsu of Iu and a free left socketsv of Iv,

modify Iu andIv by the description (4.4),

3. setIG =
⋃

u∈V Iu.

Since the in-degree and the out-degree of every node is bounded by two, and since every

instanceIu has initially two right and two left sockets, there will always be the required free

sockets.

74

It remains to prove that a minimum common partition for the finalIG (that is, when

modifications for all edges are done) can be used to find a maximum independent set inG.

Lemma 4.2.1 LetG be a cubic graph onN vertices. Then, there exists an independent setI

of sizeh in G if and only if there exists a common partition ofIG of size12N − h.

Proof. Let GC be the conflict graph ofIG; GC has9N vertices. LetO′
u = {(ducu, ducu),

(bueu, bueu), (fugu, fugu), (fuhu, fuhu)}, that is,O′
u is a set consisting of four out of the nine

possible matches in the small instanceIu (in Figure 4.2, these four matches are represented

by the thin lines). The crucial observation is that
⋃

u∈V O′
u is an independent set of size4N

in the conflict graphGC .

Given an independent setI of G, construct a common partition ofIG as follows. Foru ∈

I, use the five matches fromOu, and foru 6∈ I, use the four matches fromO′
u. The resulting

solution will use5h+4(N−h) matches which corresponds to9N−(5h+4(N−h)) = 5N−h

new breaks and7N + 5N − h = 12N − h blocks.

Conversely, given a common partition ofIG of sizem, let I consist of all verticesu such

thatIu contributes5 matches (i.e.,11 blocks) to the common partition. Then,h ≥ 12N −m,

and the proof is completed.2

Since the reduction can clearly be done in polynomial time (even in linear), with respect

to |V | and|E|, the proof of NP-hardness of2-MCSP is completed.2

Proof. (Theorem 4.2.1) We use the same construction and only complement calculations

of the inapproximability ratio. Given a cubic graphG on N vertices, letm′ denote the size

75

of a minimum common partition of the instanceIG = (XG, YG) and letm denote the size

of a minimum common partition of the instance(A, B), derived from the multiset instance

(XG, YG) by relation (4.1). We note that each ofXG andYG consists of7N strings. By

Lemma 4.2.1 the size of a maximum independent set inG is 12N − m′ which equals to

26N − 2 − m by relation (4.2) and the above observation about size ofXG andYG; thus,

an α-approximation algorithm forMCSP on the instance(A, B) can be used to derive an

independent set inG of size at least26N − 2− α ·m.

Berman and Karpinski [10] proved that it is NP-hard to approximate3-MIS within 140
139
−ε,

for every ε > 0. Thus, unless P=NP, for everyε > 0, the approximation ratioα of any

algorithm forMCSP must satisfy

26N − 2−m

26N − 2− α ·m
≥ 140

139
− ε .

Solving forα yields, for everyε′ > 0,

α ≥ 26N − 2 + 139m

140m
− ε′ = 1 +

26N − 2−m

140m
− ε′ .

Using the fact that a maximum independent set in any cubic graph onN vertices has always

size at leastN/4, we havem ≤ 26N − 2 − N/4 and we conclude that it is NP-hard to

approximateMCSP within 1 + 1
103·140

− ε, for everyε > 0. 2

76

Remark: To prove that onlySMCSP is APX-hard, it is possible to start with smaller

instancesIu and thus get the constant larger.

4.3 Algorithms

4.3.1 Simple1.5-approximation for 2-MCSP

We observed in Section 4.1 thatMCSP can be restated as finding a maximum independent

set in the conflict graphG which is the same as finding a minimum vertex cover (MVC) for

G. Unfortunately, both these problems are NP-complete. Even worse, an approximation for

the vertex cover does not transfer in general to an approximation forMCSP (and there are

no good approximations forMIS). The problem is that there is no direct relation between the

number of vertices in theMVC and the number of breaks (or blocks) inMCSP (while the

size ofMIS equals the number of unbroken duos inMCSP). There may be many vertices in

MVC of G and still no breaks inMCSP. Fortunately, the situation is a bit easier for2-MCSP.

In this and the following subsection we will assume that no duo appears at the same time

twice in A and twice inB. The point is that in2-MCSP, the minimum common partition

never has to break such a duo. Thus, if there exists inA andB such a duo, it is possible to

replace it by a new letter, solve the modified instance and then replace the new letter back by

the original duo.

Given the assumption, we observe that the conflict graphG = (V, E), for any2-MCSP

instanceA, B on strings of lengthn, will have at mostn vertices. The reason is that if a

77

pair aiai+1 from A matches with two pairs fromB, say withbjbj+1 and withblbl+1, that the

other occurrence of letterai in A, say at positionak, is not followed by the other occurrence

of ai+1, and thus, the pairakak+1 cannot be matched with anything fromB. Therefore, on

average, every letter can appear in at most one match, andG has at mostn vertices.

Consider now anα-approximationC for minimum vertex cover on the conflict graph

G = (V, E) and letC∗ denote a minimum vertex cover. Then, by Lemma 4.1.1, a minimum

common partition hasn− |V |+ |C∗| blocks while a common partition corresponding to the

vertex coverC hasn− |V |+ |C| blocks. Exploiting the earlier observation that|V | ≤ n, we

get:

n− |V |+ |C|
n− |V |+ |C∗|

≤ 1 +
|C| − |C∗|
|C∗|

≤ α

Theorem 4.3.1 An α-approximation algorithm forMVC yields anα-approximation for the

2-MCSP.

Thus, a trivial2-approximation for minimum vertex cover can be turned to a2-approximation

for 2-MCSP. Observing further that, the conflict graph is6-claw free, for2-MCSP, we can

use1.5-approximation algorithm for vertex cover by Halldórsson [35].

Corollary 4.3.2 There exists a polynomial1.5-approximation algorithm for2-MCSP prob-

lem.

78

4.3.2 Reducing2-MCSP to MIN 2-SAT

In this section we will see how to solve2-MCSP using algorithms forMIN 2-SAT. We start

by recalling the definition ofMIN 2-SAT problem. InMIN 2-SAT we are given a boolean

formula in conjunctive normal form such that each clause consists of at most two literals, and

we seek seek an assignment of boolean values to the variables that minimizes the number of

satisfied clauses. Avidor and Zwick [3] proved that unless P=NP, the problem cannot be

approximated within15/14 − ε, for anyε > 0, and they also gave a1.1037-approximation

algorithm which is the best approximation algorithm for the problem we are aware of. The

main result of this section is stated in the following theorem.

Theorem 4.3.3 Anα-approximation algorithm forMIN 2-SAT yieldsα-approximations for

both2-MCSP and2-SMCSP.

Corollary 4.3.4 There exist polynomial1.1037-approximation algorithms for2-MCSP and

2-SMCSP problems.

Proof. (Theorem 4.3.3) There are only minor differences between the reductions for signed

and unsigned versions of the problem. We describe in detail the reduction for2-MCSP and

then briefly point out the differences for2-SMCSP.

Let A andB be two related strings. We start the proof with two assumptions that will

simplify the presentation:

(1) no duo appears at the same time twice inA and twice inB, and that

79

(2) every letter appears exactly twice in both strings.

Concerning the first assumption, the point is that in2-MCSP, the minimum common parti-

tion never has to break such a duo. Thus, if there exists inA andB such a duo, it is possible

to replace it by a new letter, solve the modified instance and then replace the new letter back

by the original duo. Concerning the other, a letter that appears only once can be replaced by

two copies of itself. A minimum common partition never has to use a break between these

two copies, so they can be easily replaced back to a single letter, when the solution for the

modified instance is found.

The main idea of the reduction is to represent a common partition ofA andB as a truth

assignment of a (properly chosen) set of binary variables. With each lettera ∈ Σ we associate

a binary variableXa. For each lettera ∈ Σ, there are exactly two ways to map the two

occurrences ofa in A onto the two occurrences ofa in B: either the firsta from A is mapped

on the firsta in B and the seconda from A on the seconda in B, or the other way round.

In the first case, we say thata is mappedstraight, and in the other case thata is mapped

across. Given a common partitionπ of A andB, if a lettera ∈ Σ is mapped straight we

setXa = 1, and ifa is mapped across we setXa = 0. In this way, every common partition

can be turned into truth assignment of the variablesXa, a ∈ Σ, and vice versa. Thus, there

is one-to-one correspondence between truth-assignments for the variablesXa, a ∈ Σ, and

common partitions (viewed as mappings) ofA andB.

With this correspondence between truth assignments and common partitions, our next

goal is to transform the two input stringsA andB into a boolean formulaϕ such that

80

• ϕ is a conjunction of disjunctions (OR) and exclusive disjunctions (XOR),

• each clause contains at most two literals, and

• the minimum number of satisfied clauses inϕ is equal to the number of breaks in a

minimum common partition ofA andB.

The formulaϕ consists ofn − 1 clauses, with a clauseCi for each specific duoaiai+1, i ∈

[n − 1]. For i ∈ [n − 1], let si = 1 if ai is the first occurrence of the letterai in A (that is,

the other copy of the same letter occurs on a positioni′ > i), and letsi = 2 otherwise (that

is, if ai is the second occurrence of the letterai in A). Similarly, let ti = 1 if bi is the first

occurrence of the letterbi in B and letti = 2 otherwise. We are ready to defineϕ. There will

be three types of clauses inϕ.

If the duoaiai+1 does not appear inB at all, we defineCi = 1. The meaning is that in

this case,i, i+1 is a break inA in any common partition ofA andB. We call such a position

an inherent break. Let b be the number of clauses of this type.

If the duo aiai+1 appears once inB, say asbjbj+1, let Y = Xai
if si 6= tj, and let

Y = ¬Xai
otherwise; similarly, letZ = Xai+1

if si+1 6= tj+1 and letZ = ¬Xai+1
otherwise.

We defineCi = Y ∨ Z. In this way, the clauseCi is satisfied if and only ifi, i + 1 is a break

in a common partition consistent with the truth assignment ofXai
andXai+1

.

Similarly, if the duoaiai+1 appears twice inB, we setCi = Xai
⊕Xai+1

if si = si+1, and

we setCi = ¬Xai
⊕Xai+1

otherwise, where⊕ denotes the exclusive disjunction. Again, the

clauseCi is satisfied if and only ifi, i + 1 is a break in a common partition consistent with

81

the truth assignment ofXai
andXai+1

. Let k denote the number of these clauses.

By the construction, a truth assignment that satisfies the minimum number of clauses in

ϕ = C1 ∧ . . .∧Cn−1 corresponds to a minimum common partition ofA andB. In particular,

the number of satisfied clauses is equal to the number of breaks in the common partition

which is by one smaller than the number of blocks in the partition.

The formulaϕ resembles an instance of2-SAT. However,2-SAT formulas do not allow

XOR clauses. One way to get around this is to replace every XOR clause by two OR clauses.

This increases the length of the formula which in turn increases the resulting approximation

ratio for2-MCSP. In the rest of the section, we describe how to avoid this drawback.

Consider a duoaiai+1 in A for which Ci is a XOR-clause. Then the duoaiai+1 appears

twice inB, and, by our assumption (1), the other occurrence of the letterai in A is followed

by a letter different fromai+1 or the other occurrence of the letterai is the last letter inA.

This implies thatk ≤ b + 1.

Let ϕ̄ be the boolean formula derived fromϕ by omitting clauses of the first type, that

is, ϕ̄ =
∧

i:Ci 6=1 Ci. Let ϕ′ be the formula that we get from̄ϕ by replacing each XOR clause

(X⊕Y) by (X∨Y)∧(X̄∨ Ȳ) and keeping all other clauses. Since for any values of boolean

variablesX andY , (X ⊕ Y) + 1 = (X ∨ Y) + (X̄ ∨ Ȳ) (when using the boolean values

of the parentheses as integers), the minimum number of satisfied clauses inϕ̄ is exactly byk

smaller than the minimum number of satisfied clauses inϕ′.

Let s be the minimum number of satisfied clauses in the formulaϕ̄. Then,s + b + 1 is

the size of a minimum common partition ofA andB and the minimum number of satisfied

82

clauses in the2-SAT formulaϕ′ is s + k. An α-approximation forMIN 2-SAT instanceϕ′

satisfies at mostα·(s+k) clauses and the same truth assignment satisfies at mostα·(s+k)−k

clauses inϕ̄. Considering the additionalb breaks for clauses of the first type, this truth

assignment corresponds to a common partition with at mostα · (s + k) − k + b ≤ α · (s +

b + 1) − 1 breaks. Since the size of the minimum common partition iss + b + 1, this is an

α-approximation. For unsignedMCSP, the proof is completed.

For signedMCSP, we use the same correspondence between truth assignments and com-

mon partitions; the only difference is in definition of the clausesCi. 2

83

Chapter 5

Conclusion

In this dissertation, we developed computational methods for the identification and analy-

sis of repetitive patterns in biological sequences. We gave a new definition of repeat that

considers both length and frequency; we designed efficient algorithms for finding unique

and popular oligos from large unigene databases; and we inferred the relation of multigene

families between two genomes by studying the minimum common string partition (MCSP)

problem.

Although our contributions are somewhat diverse, we can delineate some common strate-

gies, which are detailed below.

Decompose long strings into short substrings. The rationale of this approach is that if

a long string is repetitive, then some of its substrings will be repetitive as well. Shorter

substrings serve the function of “signatures” for longer strings. The advantage of using

shorter strings is that they are easier to store and process. An example of using this strat-

84

egy is theq-gram filtration algorithm for approximate string matching (see e.g. [55, page

162]). The filtration strategy is based on the observation that if twol-length stringsA

and B match with at mostd mismatches, then they share anq-mer for q = b l
d+1
c, i.e.

A[i . . . i + q − 1] = B[i . . . i + q − 1] for some1 ≤ i ≤ l − q + 1. This strategy has

been used in Chapter 2, where we define composite repeats as concatenations of elementary

repeats, and in Chapter 3, where the algorithms for unique oligos and popular oligos use

seeds and cores to prune the search space.

Organize strings with graphs. In order to extract structures from strings, it is often fruitful

to organize them and their relationships using graphs (especially trees). The graph represen-

tation helps us isolate structures in the strings that otherwise will be difficult to detect. Graphs

can also be implemented in space-efficient data structures for processing of strings, as shown

in the various applications of suffix trees (see [34]). For instance, in Chapter 2 we use suffix

trees to find exact elementary repeats in linear time; in Chapter 3 we use UPGMA trees to

find the intersections of neighborhoods of candidate popular oligos; and in Chapter 4, we use

conflict graphs to reduceMCSP problem to vertex cover problem.

Formulate combinatorial optimization problems. As it turns out, many problems in

computational biology can be formulated as combinatorial optimization problems (see e.g. [33]

and references therein). This strategy is based on the assumption that nature often favors

parsimony models. For example, in Chapter 4 we look for an evolutionary scenario that min-

imizes the breakpoint distance between two genomes. Many of these problems are NP-hard

85

and one thus need to design approximation algorithms for them. However, we should use this

strategy carefully because its success depends on whether the specific parsimony assumption

is biologically realistic.

5.1 Future directions

In the problem of finding repeats in DNA sequences, the discovery of composite repeats

is only sketched. Also, several questions on finding elementary repeats are still open. For

example, it is not clear how to find consensus sequences of approximate repeats, how to rank

the repeats according to their statistical significance, or how to decide the minimum length

of nontrivial repeats, etc. We believe that the accuracy of determining elementary repeats is

crucial in the identification of composite repeats.

In the future, we plan to combine the identification of composite and elementary repeats

in a single process of dictionary and grammatical inference as follows. First, we will discover

elementary repeats using a stochastic dictionary model, which has already been successfully

applied to motif discovery (see e.g. [14]). Then, we will identify composite repeats using

stochastic grammars, which have been successful in predicting RNA secondary structures

(see [23] and references therein). The rationale of this approach lies in the observations that

(i) motifs are one type of elementary repeats, and (ii) the structures in composite repeats,

such as LTRs (Long Terminal Repeats), inverted repeats, etc., are somewhat related to the

secondary structures of RNA.

86

A potential improvement for oligo design is to rank oligos according to their “usefulness”,

e.g. specificity for unique oligos and hybridization stability for popular oligos. A desirable

feature for OLIGOSPAWN would consist of a ranking system that assigns a score to each

candidate oligo.

Our approximation algorithms described in Chapter 4 are for the variants ofMCSP that

upper-bound the sizes of gene families. It is still unknown whether there exists a constant ra-

tio bound for the generalMCSP problem. For biological applications we need more flexible

variants ofMCSP. For example, if we use the more realistic modeling of genome rear-

rangement where two input genomes may contain different number of genes, then we should

introduce additional operations such as gene duplications, insertions and deletions.

87

Bibliography

[1] Mark D. Adams, Jenny M. Kelley, Jeannine D. Gocayne, Mark Dubnick, Mihael H.
Polymeropoulos, Hong Xiao, Carl R. Merril, Andrew Wu, Bjorn Olde, Ruben F.
Moreno, Anthony R. Kerlavage, W. Richard McCombie, and J. Craig Venter. Com-
plementary DNA sequencing: Expressed sequence tags and human genome project.
Science, 252(5013):1651–1656, 1991.

[2] A. Apostolico, M. E. Bock, and S. Lonardi. Monotony of surprise and large-scale
quest for unusual words (extended abstract). In G. Myers, S. Hannenhalli, S. Istrail,
P. Pevzner, and M. Waterman, editors,Proc. of Research in Computational Molecular
Biology (RECOMB), pages 22–31, Washington, DC, April 2002.

[3] Adi Avidor and Uri Zwick. Approximating MINk-SAT. In Proceedings of 13th Inter-
national Symposium on Algorithms and Computation (ISAAC), volume 2518 ofLecture
Notes in Computer Science, pages 465–475, 2002.

[4] Timothy L. Bailey and Charles Elkan. Unsupervised learning of multiple motifs in
biopolymers using expectation maximization.Machine Learning, 21(1/2):51–80, 1995.

[5] P. Baldi and S. Brunak.Bioinformatics: The Machine Learning Approach. 2nd Ed.The
MIT Press, 2001.

[6] Zhirong Bao and Sean R. Eddy. AutomatedDe Novoidentification of repeat sequence
families in sequenced genomes.Genome Research, 12(8):1269–1276, 2002.

[7] A Barakat, N Carels, and G Bernardi. The distribution of genes in the genomes of
Gramineae. Proc. Natl. Acad. Sci. U.S.A., 94:6857–6861, 1997.

[8] G. Benson. An algorithm for finding tandem repeats of unspecified pattern size. In
S. Istrail, P. Pevzner, and M. Waterman, editors,Proceedings of the 2nd Annual Inter-
national Conference on Computational Molecular Biology, pages 20–29, New York,
NY, 1998. ACM Press.

[9] G. Benson. Tandem repeats finder – a program to analyze dna sequences.Nucleic Acids
Res., 27:573–580, 1999.

88

[10] Piotr Berman and Marek Karpinski. On some tighter inapproximability results. In
Proceedings of the of 26th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 1644 ofLecture Notes in Computer Science, pages 200–
209, 1999.

[11] M.S. Boguski, T.M. Lowe, and C.M. Tolstoshev. dbEST–database for “expressed se-
quence tags”.Nat. Genet., 4(4):332–3, 1993.

[12] E. T. Bolton and B. J. McCarthy. A general method for the isolation of RNA comple-
mentary to DNA.Proc. Natl. Acad. Sci. U.S.A., 48(8):1390–1397, 1962.

[13] Jeremy Buhler and Martin Tompa. Finding motifs using random projections.J. Comput.
Bio., 9(2):225–242, 2002.

[14] Harmen J. Bussemaker, Hao Li, and Eric D. Siggia. Building a dictionary for genomes:
Identification of presumptive regulatory sites by statistical analysis.Proc. Natl. Acad.
Sci. U.S.A., 97:10096–10100, 2000.

[15] A. Caprara. Sorting by reversals is difficult. InProceedings of the 1st Annual Interna-
tional Conference on Computational Molecular Biology, pages 75–83, Santa Fe, NM,
1997. ACM Press.

[16] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment
of orthologous genes via genome rearrangement.IEEE/ACM Trans. Comput. Biology
Bioinform., 2(4):302–315, 2005.

[17] David A. Christie and Robert W. Irving. Sorting strings by reversals and by transposi-
tions. SIAM Journal on Discrete Mathematics, 14(2):193–206, 2001.

[18] M. Chrobak, D. Eppstein, G.F. Italiano, and M. Yung. Efficient sequential and parallel
algorithms for computing recovery points in trees and paths. InACM-SIAM Annual
Symposium on Discrete Algorithms, pages 158–167, 1991.

[19] Marek Chrobak, Petr Kolman, and Jiřı́ Sgall. The greedy algorithm for the minimum
common string partition problem. InProceedings of the 7th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
pages 84–95, 2004. To appear in ACM Transactions on Algorithms.

[20] Won-Hyong Chung, Sung-Keun Rhee, Xiu-Feng Wan, Jin-Woo Bae, Zhe-Xue Quan,
and Yong-Ha Park. Design of long oligonucleotide probes for functional gene detection
in a microbial community.Bioinformatics, 21(22):4092–4100, 2005.

[21] T.J. Close, R. Wing, A. Kleinhofs, and R. Wise. Genetically and physically anchored
EST resources for barley genomics.Barley Genetics Newsletter, 31:29–30, 2001.

[22] Graham Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. InProceedings of the 13th Annual ACM-SIAM Symposium On Discrete
Mathematics (SODA), pages 667–676, 2002.

89

[23] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.Biological sequence analysis: prob-
abilistic models of proteins and nucleic acids. Cambridge University Press, 1998.

[24] R. Edgar and E. Myers. Piler: identification and classification of genomic repeats. In
Proc. of the 13th International Conference on Intelligent Systems for Molecular Biology
(ISMB’05), page To appear, Detroit, Michigan, 2005. AAAI press, Menlo Park, CA.

[25] D. Eppstein. Personal communication, 2005. About the sparsest subsequence problem
for selecting top unique oligo from unigenes.

[26] Eleazar Eskin and Pavel A. Pevzner. Finding composite regulatory patterns in DNA se-
quences. InProc. of the International Conference on Intelligent Systems for Molecular
Biology, pages Bioinformatics S181–S188. AAAI press, Menlo Park, CA, 2002.

[27] W. J. Ewens and G. R. Grant.Statistical Methods in Bioinformatics. 2nd Ed.Springer-
Verlag, 2004.

[28] R. A. Fisher and F. Yates.Example 12, Statistical tables. London, 1938.

[29] Esra Galun. Transposable elements: a guide to the perplexed and the novice with
appendices on RNAi, chromatin remodeling and gene tagging. Kluwer academic, 2003.

[30] M. R. Garey and D. S. Johnson.Computers and intractability: a guide to the theory of
NP-completeness. Freeman, New York, NY, 1979.

[31] Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum Common String Parti-
tion Problem: Hardness and Approximations. InProceedings of the 15th International
Symposium on Algorithms and Computation (ISAAC), volume 3341 ofLecture Notes in
Computer Science, pages 484–495, 2004.

[32] Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum Common String Partition
Problem: Hardness and Approximations.Electronic Journal of Combinatorics, 12(1),
2005.

[33] H.J. Greenberg, W.E. Hart, and G. Lancia. Opportunities for combinatorial optimization
in computational biology.INFORMS J. Comput., 16(3):211–231, 2004.

[34] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[35] Magńus M. Halld́orsson. Approximating discrete collections via local improvements.
In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 160–169, San Francisco, California, 22–24 January 1995.

[36] C. S. Han, R. D. Sutherland, P. B. Jewett, M. L. Campbell, L. J. Meincke, J. G. Tesmer,
M. O. Mundt, J. J. Fawcett. U-J. Kim, L. L. Deaven, and N. A. Doggett. Construction
of a BAC contig map of chromosome 16q by two-dimensional overgo hybridization.
Genome research, 10:714–721, 2000.

90

[37] CS Han, RD Sutherland, PB Jewett, ML Campbell, LJ Meincke, JG Tesmer,
MO Mundt, JJ Fawcett, UJ Kim, LL Deaven, and NA Doggett. Construction of a BAC
contig map of chromosome 16q by two-dimensional overgo hybridization.Genome
Research, 104:714–721, 2000.

[38] J. M. Hancock and J. S. Armstrong. SIMPLE34: an improved and enhanced implemen-
tation for VAX and Sun computers of the SIMPLEx algorithm for analysis of clustered
repetitive motifs in nucleotide sequences.Comput. Appl. Biosci., 10:67–70, 1994.

[39] Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip: Polyno-
mial algorithm for sorting signed permutations by reversals.J. Assoc. Comput. Mach.,
46(1):1–27, January 1999.

[40] G. Z. Hertz and G. D. Stormo. Identifying DNA and protein patterns with statistically
sign ificant alignments of multiple sequences.Bioinformatics, 15:563–577, 1999.

[41] X. Huang and A. Madan. CAP3: A DNA sequence assembly program.Genome Re-
search, 9:868–877, 1999.

[42] David S. Johnson. Approximation algorithms for combinatorial problems.J. Comput.
Syst. Sci., 9:256–278, 1974.

[43] I. Jonassen. Efficient discovery of conserved patterns using a pattern graph.Comput.
Appl. Biosci., 13:509–522, 1997.

[44] I. Jonassen, J. F. Collins, and D. G. Higgins. Finding flexible patterns in unaligned
protein sequences.Protein Science, 4:1587–1595, 1995.

[45] Keich and Pevzner. Finding motifs in the twilight zone. InAnnual International Con-
ference on Computational Molecular Biology, pages 195–204, Washington, DC, April
2002.

[46] P. Kolman and T. Walen. Reversal distance for strings with duplicates: Linear time
approximation using hitting set. Technical Report KAM-DIMATIA Series 776, Charles
University in Prague, 2006.

[47] Petr Kolman. Approximating reversal distance for strings with bounded number of du-
plicates. InProceedings of the 30th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), volume 3618 ofLecture Notes in Computer Sci-
ence, pages 580–590, 2005.

[48] Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher, Jens
Stoye, and Robert Giegerich. REPuter: The manifold applications of repeat analysis
on a genomic scale.Nucleic Acids Res., 29(22):4633–4642, 2001.

[49] Stefan Kurtz and Chris Schleiermacher. REPuter: Fast computation of maximal repeats
in complete genomes.Bioinformatics, 15(5):426–427, 1999.

91

[50] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C.
Wootton. Detecting subtle sequence signals: A Gibbs sampling strategy for multiple
alignment.Science, 262:208–214, October 1993.

[51] Benjamin Lewin, editor.Genes VIII. Oxford University Press, New York, NY, 2004.

[52] Fugen Li and Gary D. Stormo. Selection of optimal DNA oligos for gene expression
arrays.Bionformatics, 17(11):1067–1076, 2001.

[53] Dave Matthews, Thomas Wicker, and Jorge Dubcovsky. TREP: the triticeae re-
peat sequence database. Available athttp://wheat.pw.usda.gov/ITMI/
Repeats/ .

[54] W Michalek, W Weschke, KP Pleissner, and A Graner. Est analysis in barley defines a
unigene set comprising 4,000 genes.Theor Appl Genet, 104:97–103, 2002.

[55] G. Navarro and M. Raffinot.Flexible pattern matching in strings: practical on-line
search algorithms for texts and biological sequences. Cambridge University Press,
2002.

[56] A.F. Neuwald, J.S. Liu, and C.E. Lawrence. Gibbs motif sampling: Detecting bacterial
outer membrane protein repeats.Protein Science, 4:1618–1632, 1995.

[57] S. Ouyang and C.R. Buell. The TIGR plant repeat databases: a collective resource for
the identification of repetitive sequences in plants.Nucleic Acids Research, 32:360–
363, 2004.

[58] Pavel A. Pevzner and Sing-Hoi Sze. Combinatorial approaches to finding subtle signals
in DNA sequences. InProc. of the International Conference on Intelligent Systems for
Molecular Biology, pages 269–278. AAAI press, Menlo Park, CA, 2000.

[59] Pavel A. Pevzner, Haixu Tang, and Glenn Tesler.De novorepeat classification and frag-
ment assembly. InProc. of Research in Computational Molecular Biology (RECOMB),
pages 213–222, San Diego, Ca, April 2004.

[60] A. L. Price, N. C. Jones, and P. A. Pevzner. De novo identification of repeat families in
large genomes. InProc. of the 13th International Conference on Intelligent Systems for
Molecular Biology (ISMB’05), page To appear, Detroit, Michigan, 2005. AAAI press,
Menlo Park, CA.

[61] Sven Rahmann. Rapid large-scale oligonucleotide selection for microarrays. InPro-
ceedings of the First IEEE Computer Society Bioinformatics Conference (CSB’02),
pages 54–63. IEEE Press, 2002.

[62] Isidore Rigoutsos and Aris Floratos. Combinatorial pattern discovery in biological se-
quences: The TEIRESIASalgorithm.Bioinformatics, 14(1):55–67, 1998.

92

http://wheat.pw.usda.gov/ITMI/Repeats/
http://wheat.pw.usda.gov/ITMI/Repeats/

[63] M. T. Ross, S. LaBrie, J. McPherson, and V. P. Stanton. Screening large-insert libraries
by hybridization. In N.C. Dracopoli, J.L. Haines, B.R. Korf, D.T. Moir, C.C. Morton,
C.E. Seidman, J.G. Seidman, and D.R. Smith, editors,Current protocols in Human
Genetics, pages 5.6.1 – 5.6.52. John Wiley and Sons, New York, 1999.

[64] J.-M. Rouillard, C. J. Herbert, and M. Zuker. Oligoarray: Genome-scale oligonu-
cleotide design for microarrays.Bioinformatics, 18(3):486–487, 2002.

[65] Steve Rozen and Helen J. Skaletsky. Primer3 on the WWW for general users and for
biologist programmers. In S. Krawetz and S. Misener, editors,Bioinformatics Meth-
ods and Protocols: Methods in Molecular Biology, pages 365–386. Humana Press,
Totowa, NJ, 2000. Available athttp://www-genome.wi.mit.edu/genome_
software/other/primer3.html .

[66] M. Sagot and E. W. Myers. Identifying satellites in nucleic acid sequences. In S. Is-
trail, P. Pevzner, and M. Waterman, editors,Proceedings of the 2nd Annual Interna-
tional Conference on Computational Molecular Biology, pages 234–242, New York,
NY, 1998. ACM Press.

[67] D. Sankoff and N. El-Mabrouk. Genome rearrangement. In Tao Jiang, Ying Xu, and
Michael Q. Zhang, editors,Current Topics in Computational Molecular Biology, pages
135–155. The MIT Press, 2002.

[68] J. P. Schmidt. All highest scoring paths in weighted grid graphs and their application to
finding all approximate repeats in strings. InProceedings of the 3rd Israel Symposium
on Theory of Computing and Systems, pages 67–77. IEEE Computer Society Press,
1995.

[69] Dana Shapira and James A. Storer. Edit distance with move operations. In13th Sym-
posium on Combinatorial Pattern Matching (CPM), volume 2373 ofLecture Notes in
Computer Science, pages 85–98, 2002.

[70] A.F.A. Smit and P. Green. REPEATMASKER. Available at http://www.
repeatmasker.org/ .

[71] D.L. Swofford. PAUP: Phylogenetic Analysis Using Parsimony version 4.0 beta 10.
Sinauer Associates, Sunderland, Massachusetts, 2002.

[72] Martin Tompa and Jeremy Buhler. Finding motifs using random projections. InAnnual
International Conference on Computational Molecular Biology, pages 67–74, Mon-
treal, Canada, April 2001.

[73] P. E. Warburton, J. Giordano, F. Cheung, Y. Gelfand, and G. Benson. Inverted re-
peat structure of the human genome: the x-chromosome contains a preponderance of
large, highly homologoous inverted repeats that contain testes genes.Genome Research,
14:1861–1869, 2004.

93

http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www.repeatmasker.org/
http://www.repeatmasker.org/

[74] M. S. Waterman.Introduction to Computational Biology. Chapman & Hall, 1995.

[75] G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome inversion
problem.Journal of Theoretical Biology, 99:1–7, 1982.

[76] Y. Yu, J. P. Tomkins, R. Waugh, D. A. Frisch, D. Kudrna, A. Kleinhofs, R. S. Bruegge-
man, G. J. Muehlbauer, R. P. Wise, and R. A. Wing. A bacterial artificial chromosome
library for barley (Hordeum vulgare L.) and the identification of clones containing pu-
tative resistance genes.Theor Appl Genet, 101(7):1093–1099, 2000.

[77] J. Zheng, T. Close, T. Jiang, and S. Lonardi. Efficient selection of unique and popular
oligos for large EST databases. InProceedings of Symposium on Combinatorial Pattern
Matching (CPM’03), volume 2676 ofLNCS, pages 273–283, Morelia, Mexico, June
2003. Springer.

[78] J. Zheng, T. Close, T. Jiang, and S. Lonardi. Efficient selection of unique and popular
oligos for large EST databases.Bioinformatics, 20(13):2101–2112, 2004.

[79] J. Zheng and S. Lonardi. Discovery of repetitive patterns in dna with accurate bound-
aries. InProceedings of IEEE International Symposium on BioInformatics and Bio-
Engineering (BIBE’05), pages 105–112, Minneapolis, Minnesota, October 2005.

[80] J. Zheng, J. T. Svensson, K. Madishetty, T. Close, T. Jiang, and S. Lonardi. Oligospawn:
a software tool for the design of overgo probes from large unigene datasets.BMC
Bioinformatics, 7(7), 2006.

94

	List of Tables
	List of Figures
	Introduction
	Challenges
	A summary of our contribution
	Targeted audience

	Repeat Finding
	Preliminaries
	Related work
	Our contribution

	Definition
	Algorithms for finding elementary repeats
	Exact repeats
	Approximate repeats

	Results
	Simulations
	Real biological repeats

	Oligo Design
	Preliminaries
	Our Contribution
	Notations

	Unique oligo
	Definition
	Algorithm
	Group-unique oligo

	Popular oligo
	Definition
	Algorithm

	Oligo filtration and selection
	Results
	Implementation
	Simulations
	Running on real data
	Overgo hybridization

	Minimum Common String Partition
	Preliminaries
	Related work
	Combinatorial properties of MCSP

	Hardness of approximation
	Algorithms
	Simple 1.5-approximation for 2-MCSP
	Reducing 2-MCSP to MIN 2-SAT

	Conclusion
	Future directions

	Bibliography

